
Upstreaming



Contents1

Where to upstream 32

What can be upstreamed 43

Upstreaming changes made to a piece of Open Source software provides distinct4

advantages for the author of the changes and the ecosystem of users of software.5

The author can expect to see:6

• Reduced overhead in on-going maintenance of their code base: With the7

changes available in the upstream version, the author will no longer need8

to port changes when upgrading to a newer version of the software.9

• Reduced risk of incompatible changes and/or features being added to the10

upstream code base: When making local modifications to a code base,11

there is a risk that at some future point any local changes will fail to apply12

without significant changes or a comparable feature will be implemented13

with different semantics requiring either conversion to this feature to be14

carried out or continuing to carry the local change with much reduced15

advantages.16

• Greater review of the proposed changes: Open source projects tend to17

review changes before they are merged and whilst not perfect, such reviews18

tend to be carried out by developers with a good working knowledge of19

the code base, which results in a better review than would be achieved in20

many settings.21

• Potentially increased testing of added features: Other users of the software22

either evaluating or using the upstreamed features may uncover bugs or23

security holes in the added features that might otherwise go missed. This24

results in increased robustness for your users.25

• Potential for further complementary features being added: The addition26

of a feature may prompt other developers to add complimentary features27

that prove useful to either you or your users.28

The upstream project obviously benefits from the addition of features as this29

makes the software appealing to a wider audience and thus is likely to increase30

adoption. Having an active community may also help to increase adoption in31

its own right.32

Whilst there is obviously an advantages for upstream projects to accept new33

features, it is also important that they thoroughly review and consider such34

changes. Bad changes could lead to instability of the application, negatively35

impacting all users of the project. Additionally the maintainers1 are taking36

on the task of providing some maintenance for the added features. It is thus37

important that they ensure such changes comply with the coding conventions38

and other polices to ensure ease of maintenance and continued good health of39

the project.40

1https://em.pages.apertis.org/apertis-website/policies/contributions/#the-role-of-
maintainers

2

https://em.pages.apertis.org/apertis-website/policies/contributions/#the-role-of-maintainers
https://em.pages.apertis.org/apertis-website/policies/contributions/#the-role-of-maintainers
https://em.pages.apertis.org/apertis-website/policies/contributions/#the-role-of-maintainers


Where to upstream41

As mentioned elsewhere, Apertis is a derivative of Debian, which it’s self pack-42

ages software projects from many sources outside of Debian its self. Depending43

on the changes being made, this may present 3 options as to where to upstream44

the changes:45

• Apertis46

• Debian47

• Main project of the software component48

The effort required to get changes accepted by each of these places and the49

associated delay in seeing your changes reach a released version of Apertis are50

going to differ, often quite drastically and is frequently inversely proportional51

to the on-going maintenance costs.52

As a user of Apertis, it is likely that submitting changes to Apertis may offer53

the lowest barrier to entry and fastest route to see the changes reflected in54

an Apertis release. There may be instances where Apertis offers the only real55

option, for example where Apertis is maintaining an older version of the project56

for licensing reasons.57

It is likely that Debian will only accept very limited types of change. Some58

changes such as security and bug fixes may be more viable for upstreaming to59

Debian, as a general rule feature additions may be less likely to be accepted,60

though this will depend on how “alive” the upstream project is, what the feature61

is and how the maintainer feels about it (after all, the maintainer will be taking62

on the burden of maintaining the patches). Any patches that are accepted by63

Debian may take longer to be picked up by Apertis (depending on exactly where64

the changes landed).65

The last option is to submit changes directly to the upstream project. Clearly66

packaging related changes can’t be submitted here as these are not generally67

handled by the upstream project. It is also possible that the version used in the68

current Apertis is behind upstream development branch because Apertis prior-69

itizes stability over new features. However the upstream development branch70

is where changes would need to be submitted, even when using this branch71

incurs additional effort to port and test. The advantage to submitting to the72

upstream project is that the changes will require no further ongoing porting to73

newer versions as it will be in the main code base.74

In order to alleviate the significant delay that a user of Apertis is likely to see75

between upstreaming to either Debian or upstream projects and the changes76

appearing in Apertis, it is very likely that Apertis would be willing to accept77

backported upstream changes to the version currently in use. This provides78

the user with the advantage of being able to immediately use the functionality79

without needing to carry local changes, whilst the Apertis developers can expect80

to only need to carry the changes in the short to medium term until the changes81

filter through.82

3



What can be upstreamed83

Most systems are comprised of parts that exist to provide a relatively standard84

environment that are likely to be (or could be) common to many devices using85

similar hardware or requiring similar functionality and parts that provide some86

kind of unique experience or custom logic specific to the device in question.87

It is the parts that form the standard environment where the advantages of88

upstreaming are most commonly exploited as these are the parts most likely to89

benefit others and which benefit the most from others usage.90

Examples of items that would be prime candidates for upstreaming include:91

• Drivers for publicly available devices, including peripheral devices and92

architectures/SoCs previously not supported93

• Previously unsupported functionality in provided by supported devices94

• Extending functionality for widely usable use cases in user space libraries95

and applications96

• Bug fixes and security fixes for any upstream component97

Ideally, such additions would be submitted to the main project in the first in-98

stance (with a backport submitted to Apertis once accepted upstream). Should99

upstream submission fail such patches would be considered on a case-by-case100

basis for addition into Apertis.101

Note: Upstreaming is generally a process best considered from the outset. If102

upstreaming is planned at an early stage consider actively working with the103

community2 during development, as this may streamline and simplify the devel-104

opment and upstreaming process.105

Modifications and functionality that are not suitable for upstreaming will be106

considered on a case by case basis3. Whether they will be considered suitable107

for integration into the main Apertis repositories will depend in part on how108

broad the usefulness of the changes will be with the Apertis user base. At a109

minimum it would be necessary for such changes to comply with the coding110

standards of the relevant package, not impact the operation of Apertis for other111

users and be suitably licensed.112

2https://em.pages.apertis.org/apertis-website/policies/contributions/#upstream-early-
upstream-often

3https://em.pages.apertis.org/apertis-website/policies/contributions/#adding-
components-to-apertis

4

https://em.pages.apertis.org/apertis-website/policies/contributions/#upstream-early-upstream-often
https://em.pages.apertis.org/apertis-website/policies/contributions/#upstream-early-upstream-often
https://em.pages.apertis.org/apertis-website/policies/contributions/#upstream-early-upstream-often
https://em.pages.apertis.org/apertis-website/policies/contributions/#adding-components-to-apertis
https://em.pages.apertis.org/apertis-website/policies/contributions/#upstream-early-upstream-often
https://em.pages.apertis.org/apertis-website/policies/contributions/#upstream-early-upstream-often
https://em.pages.apertis.org/apertis-website/policies/contributions/#adding-components-to-apertis
https://em.pages.apertis.org/apertis-website/policies/contributions/#adding-components-to-apertis

	Where to upstream
	What can be upstreamed

