
Contributions

Contents1

Suitability of contributions 22

Upstream First Policy . 23

Upstream Early, Upstream Often . 24

Extending Apertis 35

Adding components to Apertis . 36

Dedicated Project Areas . 57

Extending existing components . 68

Adding designs to Apertis . 69

Concept Design Document Template 910

Other important bits 1111

Sign-offs . 1112

Privileged processes . 1113

Getting commit rights . 1114

The role of maintainers . 1215

Contribution Template 1316

This guide covers the expectations and processes for Apertis developers wish-17

ing to make contributions to the Apertis project and the wider open source18

ecosystem. These policies should be followed by all developers, including core19

and third party contributors. A checklist1 is provided in conjunction with these20

policies to aid contributors.21

Suitability of contributions22

Like most open source projects, Apertis requires contributions are submitted via23

a process (which in the case of Apertis is defined below) to ensure that Apertis24

continues to meet it’s design goals and remain suitable for it’s community of25

users. In addition to design and technical implementation details, the suitability26

of contributions will be checked to meet requirements in areas such as coding27

conventions2 and licensing3.28

Upstream First Policy29

Apertis is a fully open source GNU/Linux distribution that carries a lot of com-30

ponents for which it is not the upstream. The goal of upstream first4 is to31

minimize the amount of deviation and fragmentation between Apertis compo-32

nents and their upstreams.33

1https://em.pages.apertis.org/apertis-website/policies/contribution_checklist/
2https://em.pages.apertis.org/apertis-website/policies/coding_conventions/
3https://em.pages.apertis.org/apertis-website/policies/license-expectations/
4https://em.pages.apertis.org/apertis-website/policies/upstreaming/

2

https://em.pages.apertis.org/apertis-website/policies/contribution_checklist/
https://em.pages.apertis.org/apertis-website/policies/coding_conventions/
https://em.pages.apertis.org/apertis-website/policies/coding_conventions/
https://em.pages.apertis.org/apertis-website/policies/coding_conventions/
https://em.pages.apertis.org/apertis-website/policies/license-expectations/
https://em.pages.apertis.org/apertis-website/policies/upstreaming/
https://em.pages.apertis.org/apertis-website/policies/contribution_checklist/
https://em.pages.apertis.org/apertis-website/policies/coding_conventions/
https://em.pages.apertis.org/apertis-website/policies/license-expectations/
https://em.pages.apertis.org/apertis-website/policies/upstreaming/

Deviation tends to duplicate work and adds a burden on the Apertis developers34

when it comes to testing and updating to newer versions of upstream compo-35

nents. Also, as the success of Apertis relies on the success of open source in36

general to accommodate new use cases, it is actively harmful for Apertis to not37

do its part in moving the state of the art forward.38

It is the intention of Apertis to utilize existing open source projects to provide39

the functionality required, where suitable solutions are available, over the cre-40

ation of home grown solutions that would fragment the GNU/Linux ecosystem41

further.42

This policy should be taken into consideration when submitting contributions43

to Apertis.44

Upstream Early, Upstream Often45

One mantra that can be often heard in Open Source communites is “upstream46

early, upstream often”. The approach that this espouses is to breakdown large47

changes into smaller chunks, attempting to upstream a minimal implementation48

before implementing the full breath of planned features.49

Each open source community tends to be comprised of many developers, which50

share some overlap between their goals, but may have very different focuses. It51

is likely that other developers contributing to the project may have ideas about52

how the features that you are planning may be better implemented, for example53

to enable a broader set of use cases to utilise the feature. Submitting an early54

minimal implementation allows the general approach to be assessed, opinions55

to be sought and a concensus reached regarding the implementation. As it is56

likely that some changes will be required, a minimal implementation minimizes57

the effort required to take feedback into account.58

Taking this approach a step further, it can often be instructive to share your59

intention to implement larger features before starting. Such a conversation60

might be started by sending an email to the projects devel mailing list5 saying:61

Hi,62

63

I'm attempting to use <project> to <task> for my project.64

65

I'm thinking about doing <brief technical overview> to enable this usecase.66

67

I'm open to suggestions should there be a better way to solve this.68

69

Thanks,70

71

<developer>72

5https://lists.apertis.org/

3

https://lists.apertis.org/
https://lists.apertis.org/

This enables other experienced developers the chance to suggest approaches that73

may prove to be the most efficient, saving effort in implementation and later in74

review, or may point to missed existing functionality that can be used to solve75

a given need without needing substancial development effort.76

Extending Apertis77

Adding components to Apertis78

Apertis welcomes requests for new components to be added to the distribution79

and can act as a host for projects where required, however the open source focus80

of Apertis should be kept in mind and any proposed contributions need to both81

comply with Apertis policies and present a compelling argument for inclusion.82

Additional components can be categorised into 3 main groups:83

• Existing upstream component available in Debian stable (with suitable84

version)85

• Existing upstream component, not available in debian stable86

• New component on gitlab.apertis.org87

There is a maintenance effort associated with any components added to Apertis,88

as any components added will need to be maintained within the Apertis ecosys-89

tem. The effort required to maintain these different categories of components90

are very different. Prepackaged Debian components require a lot less mainte-91

nance effort than packaging other existing upstream components. Developing a92

new component on gitlab.apertis.org requires both the development and pack-93

aging/maintenance to be carried out within Apertis, significantly raising the94

effort required.95

When looking for ways to fullfil a requirement there are a number of factors96

that will increase the probability of a solution being acceptable to Apertis.97

• Component already included in Debian stable: As Apertis is based on98

Debian and already has processes in place to pull updates from this source.99

The cost of inclusion is dramatically lower than maintaining packages100

drawn from other sources, as a lot of the required effort to maintain the101

package is being carried out within the Debian ecosystem.102

• Proven actively maintained codebase: Poorly maintained codebases103

present a risk to Apertis, increasing the chance that serious bugs or104

security holes will go unnoticed. Picking a solution that has an active user105

base, a developer community making frequent updates and/or is a mature106

codebase that has undergone significant “in the field” testing makes107

the solution more attractive for inclusion in Apertis. It is understood108

that, whilst extensive, the Debian repositories are not all encompassing,109

if proposing an existing open source component that isn’t currently110

provided by Debian, being able to show that it is actively maintained will111

be important.112

4

• Best solution: In general, there exists more open source solutions than113

there exists problems. To be in with a good chance of having a compo-114

nent included in Apertis it will be required to explain why the chosen115

solution represents the best option for Apertis. What is “best” is often116

nuanced and will be affected by a number of factors, including integra-117

tion/overlap with existing components and the size/number of dependen-118

cies it has (especially if they aren’t currently in Apertis). It may be that119

whilst a number of existing solutions exist, none of them are a good fit for120

Apertis. This may suggest a new component is the best solution, though121

adapting/extending one of the existing solutions should also be considered.122

The Apertis distribution is supported by it’s members. As previously men-123

tioned, in order to ensure that Apertis remains viable and correctly focused, it124

is important that any additions to the main Apertis projects6 are justified and125

can be shown to fill a specific and real use case. Maintaining the packaging,126

updating the codebases of which Apertis is comprised and performing testing127

on supported platforms is a large part of the effort needed to provide Apertis.128

As a result, it will be necessary to either be able to provide a commitment to129

support any packages proposed for inclusion in the main Apertis projects or130

gain such a commitment from an existing member.131

The Apertis development team commit to maintaining the packages included in132

the references images. Packages may be added to the main package repositories133

but not form part of the reference images. Such packages will be maintained on134

a best effort basis, that is as long as the effort remains reasonable the Apertis135

team will attempt to keep the package in a buildable state, however runtime136

testing will not be performed. Should the package fail to build or runtime issues137

are reported and significant effort be required to modify the package the original138

or subsequent users of the package may be approached to help resource fixing139

the package. Ultimately the package may be removed if a solution can not be140

found. Likewise, should a different common solution for Apertis be chosen at a141

later date, the package may be deprecated and subsequently removed.142

Proposals for inclusion of new components are expected to be made in the form143

of a written proposal. Such a proposal should contain the following information:144

• Description of the problem which is being addressed145

• Why the functionality provided by the proposed component is useful to146

Apertis and it’s audience147

• A review of the possible solutions and any advantages and disadvantages148

that have been identified with them149

• Why the proposed solution is thought to present the best way forward,150

noting the points made above where relevant151

• Whether any resources are to be made available to help maintain the152

component.153

6https://em.pages.apertis.org/apertis-website/policies/package_maintenance/

5

https://em.pages.apertis.org/apertis-website/policies/package_maintenance/
https://em.pages.apertis.org/apertis-website/policies/package_maintenance/

Dedicated Project Areas154

An alternative to adding packages to the main Apertis project is to apply to155

have a dedicated project area, where code specific to a given project can be156

stored. Such an area can be useful for providing components that are highly157

specific to a given project and/or as a staging area for modifications to core158

packages that might later get folded back into the main area, either by changes159

being submitted to the relevant Apertis component or after changes have been160

upstreamed7 to the components main project. A dedicated area will allow a161

project group to iterate on key components more rapidly as the changes made162

do not need to work across the various supported hardware platforms. It must163

be noted that whilst a dedicated project area would allow some requirements164

with regard to platform support to be ignored, packages in such areas would still165

be required to comply with other Apertis rules such as open source licensing8.166

It should be expected that the Apertis developers will take a very hands off167

approach to the maintenance and testing of packages in such areas. If packages168

in such areas require work, the project maintainers will be contacted. The169

Apertis maintainers may at their discresion help with minor maintenance tasks170

should a package be of interest to the Apertis project. Packages that become171

unmaintained may be removed.172

Requests for dedicated project areas are also expected to be made in a form of173

a written proposal. Such a proposal should contain the following information:174

• Description of the project requiring a dedicated project area175

• Preferred name to be used to refer to the project176

• Expected use of the dedicated area177

• Expected lifetime of the project area178

• Contact details of project maintainers179

Such submissions should be made via the devel mailing list9.180

The submission should be discussed on the mailing list and must be agreed with181

the Apertis stakeholders.182

Extending existing components183

Apertis carries a number of packages that have been modified compared to their184

upstream versions. It is fairly typical for distributions to need to make minor185

modifications to upstream sources to tailor them to the distribution, Apertis is186

not different in this regard.187

Whilst Apertis does accept changes to existing components, it needs to be ac-188

knowledged that this increases the effort required to maintain the package in189

question. It may be requested that an attempt be made to upstream the changes,190

in line with the upstream first policy, either to the packages upstream or Debian.191

7https://em.pages.apertis.org/apertis-website/policies/upstreaming/
8https://em.pages.apertis.org/apertis-website/policies/license-expectations/
9https://lists.apertis.org/

6

https://em.pages.apertis.org/apertis-website/policies/upstreaming/
https://em.pages.apertis.org/apertis-website/policies/license-expectations/
https://lists.apertis.org/
https://em.pages.apertis.org/apertis-website/policies/upstreaming/
https://em.pages.apertis.org/apertis-website/policies/license-expectations/
https://lists.apertis.org/

More guidance is provided in the upstreaming10 documentation. If changes are192

not generally of use or would have a negative impact on the broader Apertis193

user base, changes may be required to be carried by the specific project within194

a dedicated project area.195

Adding designs to Apertis196

Another way to contribute to Apertis is with design documents. A design docu-197

ment contains the description of all relevant aspects of a feature or of a require-198

ment. The current design documents can be found in the Concepts Designs199

section11. These documents cover topics that have been researched but not200

necessarily implemented. They should provide a good understanding of the im-201

pact of the technology that forms the basis of the concept, what it is, how it202

works, what are the threat models, the required infrastructure, how it would be203

integrated with Apertis and anything else that is deemed relevant.204

Such designs should be updated when implemented to explictly cover the fi-205

nal implementation and moved to a suitable section of the site, typically the206

Architecture12 or Guides13 section.207

Project-wide impact is the metric used to decide if a contribution will be handled208

as a component or as a design. If the impact of the contribution on the Apertis209

project goes beyond the additional maintenance effort, it is likely to require a210

design document before the component contribution.211

As an example we will consider a proposal to provide tools and workflows for212

process automation by including the Robot Framework14 in the Apertis Uni-213

verse. The Robot Framework is a generic open source automation framework214

that can be used for automation of tests and processes. Robot Framework is215

released under Apache License 2.015. However we do not expect to ship Robot216

Framework components on Apertis target images.217

The first important consideration is the state-of-the-art for addressing the goals218

of the design. In our example the Robot Framework is preferred due it’s matu-219

rity, unique and simple to use descriptive language, and it’s active development220

community. However a strong argument in favor of the Robot Framework is it’s221

user base. Adding the Robot Framework to the Apertis Universe is expected to222

bring Robot Framework users to Apertis.223

The next important consideration are how the design is expected to work and224

the potential impact on Apertis. The Robot framework has a layered archi-225

tecture. The top layer is the simple, powerful, and extensible keyword-driven226

descriptive language for testing and automation. This language resembles a227

10https://em.pages.apertis.org/apertis-website/policies/upstreaming/
11https://em.pages.apertis.org/apertis-website/concepts/
12https://em.pages.apertis.org/apertis-website/architecture/
13https://em.pages.apertis.org/apertis-website/guides/
14https://robotframework.org/
15http://www.apache.org/licenses/LICENSE-2.0.html

7

https://em.pages.apertis.org/apertis-website/policies/upstreaming/
https://em.pages.apertis.org/apertis-website/concepts/
https://em.pages.apertis.org/apertis-website/concepts/
https://em.pages.apertis.org/apertis-website/concepts/
https://em.pages.apertis.org/apertis-website/architecture/
https://em.pages.apertis.org/apertis-website/guides/
https://robotframework.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://em.pages.apertis.org/apertis-website/policies/upstreaming/
https://em.pages.apertis.org/apertis-website/concepts/
https://em.pages.apertis.org/apertis-website/architecture/
https://em.pages.apertis.org/apertis-website/guides/
https://robotframework.org/
http://www.apache.org/licenses/LICENSE-2.0.html

natural language, is quick to develop, is easy to reuse, and is easy to extend.228

On the bottom layer of the architecture is the item to be tested, or the process229

to be automated.230

The middle layer is what makes the Robot Framework extensible: libraries.231

A library, in Robot Framework terminology, extends the Robot Framework232

language with new keywords, and provides the implementation for these new233

keywords. Each Robot Framework library acts as glue between the high level234

language and low level details of the item being tested, or of the environment235

in which the item to be tested is present.236

Adding the Robot Framework to the Apertis Universe has potential to impact:237

1. Development workflow: Apertis encourages the use of continuous integra-238

tion and the use of shared infrastructure resources instead of resources239

that are private to specific developers.240

2. Testing Apertis images: Apertis encourages the use of environments that241

are as close as possible to production environments, meaning that ideally,242

the Apertis images under test are not instrumented for testing, and are243

only minimally modified.244

3. Testing infrastructure: Apertis uses LAVA for deployment of operating sys-245

tem and software in hardware, and for automated testing. The two main246

constraints are LAVA being asynchronous and non-interactive. While both247

developers and CI pipelines can submit jobs to LAVA, they cannot inter-248

act with a job while it is running. The LAVA workflow is: submit a job,249

wait for the job to be selected for execution, wait for the job to complete250

execution, and download test results.251

Addressing the benefits of the new design proposal is also important. As men-252

tioned, adding tools and workflows for process automation with the Robot253

Framework will extend the Apertis projects and we expect to attract more254

users by doing so. Adding real-world use cases can illustrate the value with a255

good level of details.256

The proposal should also describe how to address the integration with Apertis257

taking into account the constraints of the Apertis development workflow, of258

testing Apertis images, and of the Apertis testing infrastructure.259

The design proposal can also include a high level description of the estimated260

work. For example, adding Robot Framework to Apertis will involve developing261

and/or modifying Robot Framework libraries; and developing a run-time com-262

patibility layer for LAVA to keep testing environments as close as possible to263

production environments, and to adapt the execution of Robot Framework tests264

to suit the LAVA constraints.265

And finally it could contain a high level implementation plan. In our example,266

one possible way to integrate Robot Framework is to adopt it in stages:267

1. Add Robot Framework to the Apertis SDK to enable developers to use268

the Robot Framework locally269

8

2. Robot Framework Integration development: Adapt libraries and create270

the run-time compatibility layer for LAVA271

3. Deployment on the Apertis infrastructure272

This section describes general topics, but it may not be complete for all designs.273

Regarding the level of details the design document should be complete enough274

to describe the design and surrounding problems to developers and project man-275

agers, but it is not necessary to describe implementation details.276

As a rule of thumb start with a lean design document and submit it for review277

as early as possible. You can send a new design for review to the same process278

used for a component contribution16.279

Concept Design Document Template280

The following template should be used as a guide when writing new concept281

designs:282

16https://em.pages.apertis.org/apertis-website/guides/development_process/

9

https://em.pages.apertis.org/apertis-website/guides/development_process/
https://em.pages.apertis.org/apertis-website/guides/development_process/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

+++

title = "<document title>"

weight = 100

outputs = ["html", "pdf-in",]

date = "20xx-xx-xx"

+++

Introduction

Terminology and concepts

Use cases

Non-use cases

Requirements

Existing systems

Approach

Evaluation Report

Recommendation

Design recommendations

Alternative designs

Open questions

Unresolved design questions

Unresolved implementation questions

Risks

Summary

Appendix

References

10

Other important bits283

Sign-offs284

Like the git project and the Linux kernel, Apertis requires all contributions to285

be signed off by someone who takes responsibility for the open source licensing286

of the code being contributed. The aim of this is to create an auditable chain287

of trust for the licensing of all code in the project.288

Each commit which is pushed to git master must have a Signed-off-by line,289

created by passing the --signoff/-s option to git commit. The line must give290

the real name of the person taking responsibility for that commit, and indicates291

that they have agreed to the Developer Certificate of Origin17. There may be292

multiple Signed-off-by lines for a commit, for example, by the developer who293

wrote the commit and by the maintainer who reviewed and pushed it:294

Signed-off-by: Random J Developer <random@developer.example.org>295

Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>296

Apertis closely follows the Linux kernel process for sign-offs, which is described297

in section 11 of the kernel guide to submitting patches18.298

Privileged processes299

Pushing commits to gitlab.apertis.org requires commit rights. Whilst commit300

rights to most repositories are only granted to trusted contributors (see “Getting301

commit rights” for how to get commit rights) the Apertis GitLab infrastructure302

is open for registration, enabling anyone to sign up for an account, fork packages303

into there personal space and submit merge requests (see the development pro-304

cess19 for more details). All commits must have a Signed-off-by line assigning305

responsibility for their open source licensing.306

Some admin steps on the periphery of packaging and releasing new versions of307

Apertis modules as Debian packages may require access to build.collabora.co.uk308

(OBS). These are issued separately from commit rights, and are generally not309

needed for the main development workflows.310

Submitting automated test runs on lava.collabora.co.uk requires CI rights,311

which are granted similarly to packaging rights. However, CI results may be312

viewed read-only by anyone.313

Getting commit rights314

Commit rights (to allow direct pushes to git, and potentially access to the315

package building system, build.collabora.co.uk) may be granted to trusted third316

17http://developercertificate.org/
18https://www.kernel.org/doc/Documentation/SubmittingPatches
19https://em.pages.apertis.org/apertis-website/guides/development_process/

11

http://developercertificate.org/
https://www.kernel.org/doc/Documentation/SubmittingPatches
https://em.pages.apertis.org/apertis-website/guides/development_process/
https://em.pages.apertis.org/apertis-website/guides/development_process/
https://em.pages.apertis.org/apertis-website/guides/development_process/
http://developercertificate.org/
https://www.kernel.org/doc/Documentation/SubmittingPatches
https://em.pages.apertis.org/apertis-website/guides/development_process/

party contributors if they regularly contribute to Apertis, with high quality317

contributions at the discretion of current Apertis maintainers.318

Accounts on the Apertis GitLab instance can are available via open registra-319

tion20320

By creating an account you signify that you accept the Apertis Privacy Policy21321

and Terms of Use22322

For access to other Apertis infrastructure, please send an email to account-323

requests@apertis.org including:324

• Your full name325

• The email address you prefer to be contacted through326

• The nickname/account name you wish to be known by on the Apertis327

GitLab328

The role of maintainers329

Most Open Source projects have one or more core contributors that take on a330

managerial role for the project. This group may include the original author(s)331

of the project and long-term trusted contributors, though in many projects with332

a longer history, lead of the project may well have been taken on by another333

knowledgable contributor.334

The basic role of a project maintainers is to:335

• help set the direction for the project;336

• ensure that the projects policies are followed and that the project continues337

to work towards it’s stated objectives;338

• review and evaluate contributions for correctness and suitability;339

• apply accepted contributions;340

• resolve issues (such as bugs and security issues) that arise;341

• and ensure the processes required to release new project artifacts are com-342

pleted.343

Larger projects may have many maintainers who specialise in parts of the work344

that need to be carried out or who have deeper knowledge of specific parts of345

a larger codebase. For example such maintainers may be in charge of applying346

these roles to a single component within the Apertis distribution.347

The Apertis maintainers are funded by the projects backers, with direction348

agreed between the maintainers and backers to fullfill the needs of the backers349

whilst driving the project towards it’s stated objectives. Many of the maintainers350

have a long history with the Apertis project or have come to the project with351

lots of experience in the area in which they work (such as Debian packaging).352

20https://gitlab.apertis.org/users/sign_up
21https://em.pages.apertis.org/apertis-website/policies/privacy_policy/
22https://em.pages.apertis.org/apertis-website/policies/terms_of_use/

12

https://gitlab.apertis.org/users/sign_up
https://gitlab.apertis.org/users/sign_up
https://gitlab.apertis.org/users/sign_up
https://em.pages.apertis.org/apertis-website/policies/privacy_policy/
https://em.pages.apertis.org/apertis-website/policies/terms_of_use/
https://gitlab.apertis.org/users/sign_up
https://em.pages.apertis.org/apertis-website/policies/privacy_policy/
https://em.pages.apertis.org/apertis-website/policies/terms_of_use/

The Apertis maintainers are responsible for ensuring that bug and security fixes353

are applied to the various components of which Apertis is made and for migrat-354

ing to newer releases of it’s upstreams inline with the documented polices. The355

maintainers then ensure that the source of these components is reliably built356

into the binaries and images provided, covering the range of architectures and357

platforms supported by the project.358

In addition to tracking updates and fixes from the projects that Apertis uses, the359

maintainers also review changes that are submitted to the project from contrib-360

utors. The maintainers actively contribute to the project and submit changes361

following the same processes that are expected from other contributors. All362

such changes are reviewed to ensure that they meet the project goals, objectives363

and policies as well as ensuring the are sound and do not contain any obvious364

issues.365

Whilst some contributors may remain active within the projects community366

of users and developers for some time, this is a long way from guaranteed.367

Maintainers must evaluate contributions to ensure that the changes that are368

being proposed would continue to be maintainable in the absense of the original369

contributor. As a result the maintainers may reject contributions that otherwise370

appear to meet the policies if they feel that they would be impossible to maintain371

or requiring changes to make the contribution more maintainable for the project.372

The maintainer is usually taking on the responsibility on behalf of the project373

to ensure that your changes and modifications continue to be provided by the374

project, porting them to new versions of packages or ensuring that they remain375

valid as the project inevitably changes to accomodate new goals or the ever376

changing computing landscape. As a result accepting changes will transfer this377

burden from you to the maintainers. You can continue to use the project with-378

out needing to actively maintain the changes. As a result the onus is on the379

contributor to persuade the project of the advantages of the changes, not for380

the project to be beholden to accept contributions.381

Contribution Template382

This section contains a contribution template that illustrates the ideal first email383

a developer would send for adding a design document to Apertis. This template384

for the first email contains the description of the design document instead of385

the design document itself. The idea is to promote involving the Apertis team386

as early as possible, and ideally before completing the work.387

The rationale for this approach is that it is very difficult for an external con-388

tributor to understand the impact a contribution can bring to Apertis, and by389

asking early, the work can be done in ways that are compatible with Apertis390

and welcome by the Apertis team.391

From: Your name <your email>392

13

To: devel@lists.apertis.org393

Subject: Robot Framework design document394

395

Hi,396

397

I want to contribute to Apertis, and I am sending this email to ask if our398

proposal can be added to Apertis. I am sending the email based on the399

contribution template I found on the Apertis website, and we are looking400

forward for receiving feedback from the Apertis team.401

402

Thank you,403

404

Your name405

406

-- // --407

408

1. Me and my team409

I am a developer, I am specialized in embedded devices, and I work in a product410

team that creates IoT devices with all sorts of environmental sensors and411

actuators.412

413

414

2. What is the goal of my proposal415

My proposal is for a design document that describes tools and workflows for416

process automation using the Robot Framework. The Robot Framework is a generic417

open source automation framework that can be used for automation of tests and418

processes.419

420

- From our perspective this adds value to the Apertis Universe. Do you agree?421

422

423

2. State-of-the-art424

We prefer the Robot Framework because it is mature, it is simple to use, and425

because it has an active development community.426

427

While there are other automation frameworks available, they tend to be purpose428

specific. Examples of purpose specific automation frameworks that we considered429

include Selenium and JUnit.430

431

3. How does our contribution works?432

The Robot framework has a layered architecture. The top layer is the simple,433

powerful, and extensible keyword-driven descriptive language for testing and434

automation. This language resembles a natural language, is quick to develop, is435

easy to reuse, and is easy to extend. On the bottom layer of the architecture is436

the item to be tested, or the process to be automated.437

438

14

The middle layer is what makes the Robot Framework extensible: libraries. A439

library, in Robot Framework terminology, extends the Robot Framework language440

with new keywords, and provides the implementation for these new keywords. Each441

Robot Framework library acts as glue between the high level language and low442

level details of the item being tested, or of the environment in which the item443

to be tested is present.444

445

446

4. Potential impact on Apertis?447

We are aware there the architecture of the Robot Framework is different from the448

Archutecture of LAVA. In some cases the Robot Framework accepts human449

intervention with tests while LAVA expects everything to be automated. While we do450

not fully understand to which extent this will impact Apertis, we expect that for our451

design proposal will need to adapt to Apertis and LAVA constraints. Can you help us452

here?453

454

5. Benefits for Apertis?455

The Robot Framework project is active for many years and is used for a variety456

of use cases. We expect that adding the Robot Framework to the Apertis Universe457

will bring Robot Framework users to Apertis.458

459

460

6. What is the license of the main components?461

The Robot Framework itself is licensed under the Apache License 2.0, however462

Robot Framework libraries can use different licenses.463

464

465

7. The plan to integrate the design into Apertis466

Our understanding is that Apertis currently uses LAVA for testing, and that467

images being tested are as close to production images as possible (almost no468

testing instrumentation included). We propose to develop and/or modify a few469

Robot Framework libraries, and to create a run-time compatibility layer for LAVA.470

We expect that the combination of custom libraries with the run-471

time compatibility472

layer for LAVA will enable us to keep testing environments as close as possible473

to production environments, and to adapt the execution of Robot Framework tests474

to suit the Apertis and LAVA constraints.475

476

477

8. Estimated work to implement the design478

Our ballpark estimation to add or modify Robot Framework libraries and to create479

the run-time compatibility layer for LAVA is of approximatedly 1500 hours of480

work. But we need your help to fully understand the impact on the Apertis side.481

482

483

9. High level implementation plan484

15

While we understand our use case and requirements, we would like to receive485

feedback from other potential users as soon as possible. Our idea is to deploy486

the Robot Framework in stages to allow early involvement of other users:487

488

- Add Robot Framework to the Apertis SDK to enable developers to use the Robot489

Framework locally490

491

- Robot Framework Integration development: Adapt libraries and create the run-492

time493

compatibility layer for LAVA494

495

- Deployment on the Apertis infrastructure496

16

	Suitability of contributions
	Upstream First Policy
	Upstream Early, Upstream Often

	Extending Apertis
	Adding components to Apertis
	Dedicated Project Areas

	Extending existing components
	Adding designs to Apertis
	Concept Design Document Template

	Other important bits
	Sign-offs
	Privileged processes
	Getting commit rights
	The role of maintainers

	Contribution Template

