
Coding Conventions

Contents1

Summary . 22

Code formatting . 23

Reformatting code . 34

Memory management . 45

Namespacing . 46

Modularity . 57

Pre- and post-condition assertions . 68

GError usage . 79

GList . 710

Magic values . 911

Asynchronous methods . 912

Enumerated types and booleans . 1013

GObject properties . 1114

Resource leaks . 1115

This document specifically relates to software which is or has been created for16

the Apertis project. It is important that any code added to an existing project17

utilises the coding conventions as used by that project, maintaining consistency18

across that projects codebase.19

Coding conventions is a nebulous topic, covering code formatting and whites-20

pace, function and variable naming, namespacing, use of common GLib coding21

patterns, and other things. Since C is quite flexible, this document mostly22

consists of a series of patterns (which it’s recommended code follows) and anti-23

patterns (which it’s recommended code does not follow). Any approaches to24

coding which are not covered by a pattern or anti-pattern are completely valid.25

Guidelines which are specific to GLib are included on this page; guidelines26

specific to other APIs are covered on their respective pages.27

Summary28

• Align the happy path to the left edge and when programming in the C29

language use the GLib coding style, with vim modelines.30

• Consistently namespace files, functions and types.31

• Always design code to be modular, encapsulated and loosely coupled.32

– Especially by keeping object member variables inside the object’s33

private structure.34

• Code defensively by adding pre- and post-conditions assertions to all pub-35

lic functions.36

• Report all user errors (and no programmer errors) using GError.37

• Use appropriate container types for sets of items.38

• Document all constant values used in the code.39

• Use standard GLib patterns for defining asynchronous methods.40

• Do not call any blocking, synchronous functions.41

2

• Do not run blocking operations in separate threads; use asynchronous calls42

instead.43

• Prefer enumerated types over booleans whenever there is the potential for44

ambiguity between true and false.45

• Ensure GObject properties have no side-effects.46

• Treat resources as heap-allocated memory and do not leak them.47

Code formatting48

Using a consistent code formatting style eases maintenance of code, by meaning49

contributors only have to learn one coding style for all modules, rather than one50

per module.51

Regardless of the programming language, a good guideline for the organization52

of the control flow is aligning the happy path to the left edge1.53

The coding style in use is the popular GLib coding style2, which is a slightly54

modified version of the GNU coding style3.55

Each C and H file should have a vim-style modeline, which lets the programmer’s56

editor know how code in the file should be formatted. This helps keep the coding57

style consistent as the files evolve. The following modeline should be put as the58

very first line of the file, immediately before the copyright comment4:59

/* vim:set et sw=2 cin cino=t0,f0,(0,{s,>2s,n-s,^-s,e2s: */60

For more information about the copyright comment, see Applying Licensing5.61

Reformatting code62

If a file or module does not conform to the code formatting style and needs to63

be reindented, the following command will do most of the work — but it can64

go wrong, and the file must be checked manually afterwards:65

$ indent -gnu -hnl -nbbo -bbb -sob -bad -nut /path/to/file66

To apply this to all C and H files in a module:67

$ git ls-files '*.[ch]' | \68

$ xargs indent -gnu -hnl -nbbo -bbb -sob -bad -nut69

Alternatively, if you have a recent enough version of Clang (>3.5):70

$ git ls-files '*.[ch]' | \71

$ xargs clang-format -i -style=file72

Using a .clang-format file (added to git) in the same directory, containing:73

1https://medium.com/@matryer/line-of-sight-in-code-186dd7cdea88
2https://developer.gnome.org/programming-guidelines/unstable/c-coding-style.html.en
3http://www.gnu.org/prep/standards/standards.html#Writing-C
4https://em.pages.apertis.org/apertis-website/guides/license-applying/#licensing-of-code
5https://em.pages.apertis.org/apertis-website/guides/license-applying/

3

https://medium.com/@matryer/line-of-sight-in-code-186dd7cdea88
https://developer.gnome.org/programming-guidelines/unstable/c-coding-style.html.en
http://www.gnu.org/prep/standards/standards.html#Writing-C
https://em.pages.apertis.org/apertis-website/guides/license-applying/#licensing-of-code
https://em.pages.apertis.org/apertis-website/guides/license-applying/
https://medium.com/@matryer/line-of-sight-in-code-186dd7cdea88
https://developer.gnome.org/programming-guidelines/unstable/c-coding-style.html.en
http://www.gnu.org/prep/standards/standards.html#Writing-C
https://em.pages.apertis.org/apertis-website/guides/license-applying/#licensing-of-code
https://em.pages.apertis.org/apertis-website/guides/license-applying/

See https://www.apertis.org/policies/coding_conventions/#code-formatting74

BasedOnStyle: GNU75

AlwaysBreakAfterDefinitionReturnType: All76

BreakBeforeBinaryOperators: None77

BinPackParameters: false78

SpaceAfterCStyleCast: true79

Our column limit is actually 80, but setting that results in clang-format80

making a lot of dubious hanging-indent choices; disable it and assume the81

developer will line wrap appropriately. clang-format will still check82

existing hanging indents.83

ColumnLimit: 084

Memory management85

See Memory management6 for some patterns on handling memory management;86

particularly single path cleanup7.87

Namespacing88

Consistent and complete namespacing of symbols (functions and types) and files89

is important for two key reasons:90

1. Establishing a convention which means developers have to learn fewer91

symbol names to use the library — they can guess them reliably instead.92

2. Ensuring symbols from two projects do not conflict if included in the same93

file.94

The second point is important — imagine what would happen if every project95

exported a function called create_object(). The headers defining them could96

not be included in the same file, and even if that were overcome, the program-97

mer would not know which project each function comes from. Namespacing98

eliminates these problems by using a unique, consistent prefix for every symbol99

and filename in a project, grouping symbols into their projects and separating100

them from others.101

The conventions below should be used for namespacing all symbols. They are102

the same as used in other GLib-based projects8, so should be familiar to a lot103

of developers:104

• Functions should use lower_case_with_underscores.105

• Structures, types and objects should use CamelCaseWithoutUnderscores.106

• Macros and #defines should use UPPER_CASE_WITH_UNDERSCORES.107

• All symbols should be prefixed with a short (2–4 characters) version of108

the namespace.109

6https://em.pages.apertis.org/apertis-website/guides/memory_management/
7https://em.pages.apertis.org/apertis-website/guides/memory_management/#Single-

path_cleanup
8https://developer.gnome.org/gobject/stable/gtype-conventions.html

4

https://em.pages.apertis.org/apertis-website/guides/memory_management/
https://em.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://developer.gnome.org/gobject/stable/gtype-conventions.html
https://em.pages.apertis.org/apertis-website/guides/memory_management/
https://em.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://em.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://developer.gnome.org/gobject/stable/gtype-conventions.html

• All methods of an object should also be prefixed with the object name.110

Additionally, public headers should be included from a subdirectory, effectively111

namespacing the header files. For example, instead of #include <abc.h>, a project112

should allow its users to use #include <namespace/ns-abc.h>113

For example, for a project called ‘Walbottle’, the short namespace ‘Wbl’ would114

be chosen. If it has a ‘schema’ object and a ‘writer’ object, it would install115

headers:116

• $PREFIX/include/walbottle-$API_MAJOR/walbottle/wbl-schema.h117

• $PREFIX/include/walbottle-$API_MAJOR/walbottle/wbl-writer.h118

(The use of $API_MAJOR above is for parallel installability9.)119

For the schema object, the following symbols would be exported (amongst oth-120

ers), following GObject conventions:121

• WblSchema structure122

• WblSchemaClass structure123

• WBL_TYPE_SCHEMA macro124

• WBL_IS_SCHEMA macro125

• wbl_schema_get_type function126

• wbl_schema_new function127

• wbl_schema_load_from_data function128

Modularity129

Modularity10, encapsulation11 and loose coupling12 are core computer science130

concepts which are necessary for development of maintainable systems. Tightly131

coupled systems require large amounts of effort to change, due to each change132

affecting a multitude of other, seemingly unrelated pieces of code. Even for133

smaller projects, good modularity is highly recommended, as these systems may134

grow to be larger, and refactoring for modularity takes a lot of effort.135

Assuming the general concepts of modularity, encapsulation and loose coupling136

are well known, here are some guidelines for implementing them which are137

specific to GLib and GObject APIs:138

1. The private structure for a GObject should not be in any header files139

(whether private or public). It should be in the C file defining the object,140

as should all code which implements that structure and mutates it.141

2. libtool convenience libraries should be used freely to allow internal142

code to be used by multiple public libraries or binaries. However,143

libtool convenience libraries must not be installed on the system. Use144

9https://em.pages.apertis.org/apertis-website/guides/module_setup/#Parallel_
installability

10http://en.wikipedia.org/wiki/Modular_programming
11http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
12http://en.wikipedia.org/wiki/Loose_coupling

5

https://em.pages.apertis.org/apertis-website/guides/module_setup/#Parallel_installability
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Loose_coupling
https://em.pages.apertis.org/apertis-website/guides/module_setup/#Parallel_installability
https://em.pages.apertis.org/apertis-website/guides/module_setup/#Parallel_installability
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Loose_coupling

noinst_LTLIBRARIES in Makefile.am to declare a convenience library; not145

lib_LTLIBRARIES.146

3. Restrict the symbols exported by public libraries by using my_library_LDFLAGS147

= -export-symbols my-library.symbols, where my-library.symbols is a text148

file listing the names of the functions to export, one per line. This149

prevents internal or private functions from being exported, which would150

break encapsulation. See Exposing and Hiding Symbols13.151

4. Do not put any members (e.g. storage for object state or properties) in a152

public GObject structure — they should all be encapsulated in a private153

structure declared using G_DEFINE_TYPE_WITH_PRIVATE14.154

5. Do not use static variables inside files or functions to preserve function155

state between calls to it. Instead, store the state in an object (e.g. the156

object the function is a method of) as a private member variable (in the157

object’s private structure). Using static variables means the state is shared158

between all instances of the object, which is almost always undesirable,159

and leads to confusing behaviour.160

Pre- and post-condition assertions161

An important part of secure coding is ensuring that incorrect data does not162

propagate far through code — the further some malicious input can propagate,163

the more code it sees, and the greater potential there is for an exploit to be164

possible.165

A standard way of preventing the propagation of invalid data is to check all166

inputs to, and outputs from, all publicly visible functions in a library or module.167

There are two levels of checking:168

• Assertions: Check for programmer errors and abort the program on fail-169

ure.170

• Validation: Check for invalid input and return an error gracefully on fail-171

ure.172

Validation is a complex topic, and is handled using GErrors. The remainder of173

this section discusses pre- and post-condition assertions, which are purely for174

catching programmer errors. A programmer error is where a function is called175

in a way which is documented as disallowed. For example, if NULL is passed to176

a parameter which is documented as requiring a non-NULL value to be passed;177

or if a negative value is passed to a function which requires a positive value.178

Programmer errors can happen on output too — for example, returning NULL179

when it is not documented to, or not setting a GError output when it fails.180

Adding pre- and post-condition assertions to code is as much about ensuring181

the behaviour of each function is correctly and completely documented as it is182

about adding the assertions themselves. All assertions should be documented,183

13https://autotools.io/libtool/symbols.html
14https://developer.gnome.org/gobject/stable/gobject-Type-Information.html#G-

DEFINE-TYPE-WITH-PRIVATE:CAPS

6

https://autotools.io/libtool/symbols.html
https://developer.gnome.org/gobject/stable/gobject-Type-Information.html#G-DEFINE-TYPE-WITH-PRIVATE:CAPS
https://autotools.io/libtool/symbols.html
https://developer.gnome.org/gobject/stable/gobject-Type-Information.html#G-DEFINE-TYPE-WITH-PRIVATE:CAPS
https://developer.gnome.org/gobject/stable/gobject-Type-Information.html#G-DEFINE-TYPE-WITH-PRIVATE:CAPS

preferably by using the relevant gobject-introspection annotations15, such as184

(nullable).185

Pre- and post-condition assertions are implemented using g_return_if_fail()16186

and g_return_val_if_fail()17.187

The pre-conditions should check each parameter at the start of the function,188

before any other code is executed (even retrieving the private data structure189

from a GObject, for example, since the GObject pointer could be NULL). The190

post-conditions should check the return value and any output parameters at the191

end of the function — this requires a single return statement and use of goto to192

merge other control paths into it. See Single-path cleanup18 for an example.193

A fuller example is given in this writeup of post-conditions19.194

GError usage195

GError20 is the standard error reporting mechanism for GLib-using code, and196

can be thought of as a C implementation of an exception21.197

Any kind of runtime failure (anything which is not a programmer error) must198

be handled by including a GError** parameter in the function, and setting a199

useful and relevant GError describing the failure, before returning from the200

function. Programmer errors must not be handled using GError: use assertions,201

pre-conditions or post-conditions instead.202

GError should be used in preference to a simple return code, as it can con-203

vey more information, and is also supported by all GLib tools. For example,204

introspecting an API with GObject introspection22 will automatically detect205

all GError parameters so that they can be converted to exceptions in other206

languages.207

Printing warnings to the console must not be done in library code: use a GError,208

and the calling code can propagate it further upwards, decide to handle it, or209

decide to print it to the console. Ideally, the only code which prints to the210

console will be top-level application code, and not library code.211

Any function call which can take a GError**, should take such a parameter, and212

the returned GError should be handled appropriately. There are very few situ-213

15https://wiki.gnome.org/Projects/GObjectIntrospection/Annotations
16https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-

if-fail
17https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-

val-if-fail
18https://em.pages.apertis.org/apertis-website/guides/memory_management/#Single-

path_cleanup
19https://tecnocode.co.uk/2010/12/19/postconditions-in-c/
20https://developer.gnome.org/glib/stable/glib-Error-Reporting.html
21http://en.wikipedia.org/wiki/Exception_handling
22https://wiki.gnome.org/Projects/GObjectIntrospection

7

https://wiki.gnome.org/Projects/GObjectIntrospection/Annotations
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-if-fail
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-val-if-fail
https://em.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://tecnocode.co.uk/2010/12/19/postconditions-in-c/
https://developer.gnome.org/glib/stable/glib-Error-Reporting.html
http://en.wikipedia.org/wiki/Exception_handling
https://wiki.gnome.org/Projects/GObjectIntrospection
https://wiki.gnome.org/Projects/GObjectIntrospection/Annotations
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-if-fail
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-if-fail
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-val-if-fail
https://developer.gnome.org/glib/stable/glib-Warnings-and-Assertions.html#g-return-val-if-fail
https://em.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://em.pages.apertis.org/apertis-website/guides/memory_management/#Single-path_cleanup
https://tecnocode.co.uk/2010/12/19/postconditions-in-c/
https://developer.gnome.org/glib/stable/glib-Error-Reporting.html
http://en.wikipedia.org/wiki/Exception_handling
https://wiki.gnome.org/Projects/GObjectIntrospection

ations where ignoring a potential error by passing NULL to a GError** parameter214

is acceptable.215

The GLib API documentation contains a full tutorial for using GError23.216

GList217

GLib provides several container types for sets of data:218

• GList24219

• GSList25220

• GPtrArray26221

• GArray27222

It has been common practice in the past to use GList in all situations where223

a sequence or set of data needs to be stored. This is inadvisable — in most224

situations, a GPtrArray should be used instead. It has lower memory overhead225

(a third to a half of an equivalent list), better cache locality, and the same226

or lower algorithmic complexity for all common operations. The only typical227

situation where a GList may be more appropriate is when dealing with ordered228

data, which requires expensive insertions at arbitrary indexes in the array.229

Article on linked list performance28230

If linked lists are used, be careful to keep the complexity of operations on231

them low, using standard CS complexity analysis. Any operation which uses232

g_list_nth()29 or g_list_nth_data()30 is almost certainly wrong. For example,233

iteration over a GList should be implemented using the linking pointers, rather234

than a incrementing index:235

GList *some_list, *l;236

237

for (l = some_list; l != NULL; l = l->next)238

{239

gpointer element_data = l->data;240

241

/* Do something with @element_data. */242

}243

Using an incrementing index instead results in an exponential decrease in per-244

formance (O(2×N^2) rather than O(N)):245

23https://developer.gnome.org/glib/stable/glib-Error-Reporting.html#glib-Error-
Reporting.description

24https://developer.gnome.org/glib/stable/glib-Doubly-Linked-Lists.html
25https://developer.gnome.org/glib/stable/glib-Singly-Linked-Lists.html
26https://developer.gnome.org/glib/stable/glib-Pointer-Arrays.html
27https://developer.gnome.org/glib/stable/glib-Arrays.html
28http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-should-

never-ever-EVER-us
29https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth
30https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth-data

8

https://developer.gnome.org/glib/stable/glib-Error-Reporting.html#glib-Error-Reporting.description
https://developer.gnome.org/glib/stable/glib-Doubly-Linked-Lists.html
https://developer.gnome.org/glib/stable/glib-Singly-Linked-Lists.html
https://developer.gnome.org/glib/stable/glib-Pointer-Arrays.html
https://developer.gnome.org/glib/stable/glib-Arrays.html
http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-should-never-ever-EVER-us
https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth
https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth-data
https://developer.gnome.org/glib/stable/glib-Error-Reporting.html#glib-Error-Reporting.description
https://developer.gnome.org/glib/stable/glib-Error-Reporting.html#glib-Error-Reporting.description
https://developer.gnome.org/glib/stable/glib-Doubly-Linked-Lists.html
https://developer.gnome.org/glib/stable/glib-Singly-Linked-Lists.html
https://developer.gnome.org/glib/stable/glib-Pointer-Arrays.html
https://developer.gnome.org/glib/stable/glib-Arrays.html
http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-should-never-ever-EVER-us
http://www.codeproject.com/Articles/340797/Number-crunching-Why-you-should-never-ever-EVER-us
https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth
https://developer.gnome.org/glib/2.30/glib-Doubly-Linked-Lists.html#g-list-nth-data

GList *some_list;246

guint i;247

248

/* This code is inefficient and should not be used in production. */249

for (i = 0; i < g_list_length (some_list); i++)250

{251

gpointer element_data = g_list_nth_data (some_list, i);252

253

/* Do something with @element_data. */254

}255

The performance penalty comes from g_list_length() and g_list_nth_data()256

which both traverse the list (O(N)) to perform their operations.257

Implementing the above with a GPtrArray has the same complexity as the first258

(correct) GList implementation, but better cache locality and lower memory259

consumption, so will perform better for large numbers of elements:260

GPtrArray *some_array;261

guint i;262

263

for (i = 0; i < some_array->len; i++)264

{265

gpointer element_data = some_array->pdata[i];266

267

/* Do something with @element_data. */268

}269

Magic values270

Do not use constant values in code without documenting them. These values271

can be known as ‘magic’ values, because it is not clear how they were chosen,272

what they depend on, or when they need to be updated.273

Magic values should be:274

• defined as macros using #define, rather than being copied to every usage275

site;276

• all defined in an easy-to-find-location, such as the top of the source code277

file; and278

• documented, including information about how they were chosen, and what279

that choice depended on.280

One situation where magic values are used incorrectly is to circumvent the type281

system. For example, a magic string value which indicates a special state for282

a string variable. Magic values should not be used for this, as the software283

state could then be corrupted if user input includes that string (for example).284

Instead, a separate variable should be used to track the special state. Use the285

9

type system to do this work for you — magic values should never be used as a286

basic dynamic typing system.287

Asynchronous methods288

Long-running blocking operations should not be run such that they block the289

UI in a graphical application. This happens when one iteration of the UI’s290

main loop takes significantly longer than the frame refresh rate, so the UI is not291

refreshed when the user expects it to be. Interactivity reduces and animations292

stutter. In extreme cases, the UI can freeze entirely until a blocking operation293

completes. This should be avoided at all costs.294

Similarly, in non-graphical applications that respond to network requests or D-295

Bus inter-process communication31, blocking the main loop prevents the next296

request from being handled.297

There are two possible approaches for preventing the main loop being blocked:298

1. Running blocking operations asynchronously in the main thread, using299

polled I/O.300

2. Running blocking operations in separate threads, with the main loop in301

the main thread.302

The second approach (see Threading32 typically leads to complex locking and303

synchronisation between threads, and introduces many bugs. The recommended304

approach in GLib applications is to use asynchronous operations, implemented305

using GTask33 and GAsyncResult34. Asynchronous operations must be imple-306

mented everywhere for this approach to work: any use of a blocking, syn-307

chronous operation will effectively make all calling functions blocking and syn-308

chronous too.309

The documentation for GTask35 and GAsyncResult36 includes examples and tuto-310

rials for implementing and using GLib-style asynchronous functions.311

Key principles for using them:312

1. Never call synchronous methods: always use the *_async() and *_finish()313

variant methods.314

2. Never use threads for blocking operations if an asynchronous alternative315

exists.316

3. Always wait for an asynchronous operation to complete (i.e. for its GAsyn-317

cReadyCallback to be invoked) before starting operations which depend on318

it.319

31https://em.pages.apertis.org/apertis-website/guides/d-bus_services/
32https://em.pages.apertis.org/apertis-website/guides/threading/
33https://developer.gnome.org/gio/stable/GTask.html
34https://developer.gnome.org/gio/stable/GAsyncResult.html
35https://developer.gnome.org/gio/stable/GTask.html
36https://developer.gnome.org/gio/stable/GAsyncResult.html

10

https://em.pages.apertis.org/apertis-website/guides/d-bus_services/
https://em.pages.apertis.org/apertis-website/guides/d-bus_services/
https://em.pages.apertis.org/apertis-website/guides/d-bus_services/
https://em.pages.apertis.org/apertis-website/guides/threading/
https://developer.gnome.org/gio/stable/GTask.html
https://developer.gnome.org/gio/stable/GAsyncResult.html
https://developer.gnome.org/gio/stable/GTask.html
https://developer.gnome.org/gio/stable/GAsyncResult.html
https://em.pages.apertis.org/apertis-website/guides/d-bus_services/
https://em.pages.apertis.org/apertis-website/guides/threading/
https://developer.gnome.org/gio/stable/GTask.html
https://developer.gnome.org/gio/stable/GAsyncResult.html
https://developer.gnome.org/gio/stable/GTask.html
https://developer.gnome.org/gio/stable/GAsyncResult.html

• Never use a timeout (g_timeout_add()) to wait until an asynchronous320

operation ‘should’ complete. The time taken by an operation is unpre-321

dictable, and can be affected by other applications, kernel scheduling322

decisions, and various other system processes which cannot be pre-323

dicted.324

Enumerated types and booleans325

In many cases, enumerated types should be used instead of booleans:326

1. Booleans are not self-documenting in the same way as enums are. When327

reading code it can be easy to misunderstand the sense of the boolean and328

get things the wrong way round.329

2. They are not extensible. If a new state is added to a property in future,330

the boolean would have to be replaced — if an enum is used, a new value331

simply has to be added to it.332

This is documented well in the article Use Enums Not Booleans37.333

GObject properties334

Properties on GObjects38 are a key feature of GLib-based object orientation.335

Properties should be used to expose state variables of the object. A guiding336

principle for the design of properties is that (in pseudo-code):337

var temp = my_object.some_property338

my_object.some_property = "new value"339

my_object.some_property = temp340

should leave my_object in exactly the same state as it was originally. Specifically,341

properties should not act as parameterless methods, triggering state transitions342

or other side-effects.343

Resource leaks344

As well as memory leaks39, it is possible to leak resources such as GLib timeouts,345

open file descriptors or connected GObject signal handlers. Any such resources346

should be treated using the same principles as allocated memory.347

For example, the source ID returned by g_timeout_add()40 must always be stored348

and removed (using g_source_remove()41) when the owning object is finalised.349

This is because it is very rare that we can guarantee the object will live longer350

37http://c2.com/cgi/wiki?UseEnumsNotBooleans
38https://developer.gnome.org/gobject/stable/gobject-properties.html
39https://em.pages.apertis.org/apertis-website/guides/memory_management/
40https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-timeout-

add
41https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-source-

remove

11

http://c2.com/cgi/wiki?UseEnumsNotBooleans
https://developer.gnome.org/gobject/stable/gobject-properties.html
https://em.pages.apertis.org/apertis-website/guides/memory_management/
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-timeout-add
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-source-remove
http://c2.com/cgi/wiki?UseEnumsNotBooleans
https://developer.gnome.org/gobject/stable/gobject-properties.html
https://em.pages.apertis.org/apertis-website/guides/memory_management/
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-timeout-add
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-timeout-add
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-source-remove
https://developer.gnome.org/glib/stable/glib-The-Main-Event-Loop.html#g-source-remove

than the timeout period — and if the object is finalised, the timeout left uncan-351

celled, and then the timeout triggers, the program will typically crash due to352

accessing the object’s memory after it’s been freed.353

Similarly for signal connections, the signal handler ID returned by354

g_signal_connect()42 should always be saved and explicitly disconnected355

(g_signal_handler_disconnect()43) unless the object being connected is guaran-356

teed to live longer than the object being connected to (the one which emits the357

signal):358

Other resources which can be leaked, plus the functions acquiring and releasing359

them (this list is non-exhaustive):360

• File descriptors (FDs):361

– g_open()44362

– g_close()45363

• Threads:364

– g_thread_new()46365

– g_thread_join()47366

• Subprocesses:367

– g_spawn_async()48368

– g_spawn_close_pid()49369

• D-Bus name watches:370

– g_bus_watch_name()50371

– g_bus_unwatch_name()51372

• D-Bus name ownership:373

– g_bus_own_name()52374

– g_bus_unown_name()53375

42https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-connect
43https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-handler-

disconnect
44https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-open
45https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-close
46https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-new
47https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-join
48https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-async
49https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-close-

pid
50https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-watch-

name
51https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-

unwatch-name
52https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-own-name
53https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-unown-

name

12

https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-connect
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-handler-disconnect
https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-open
https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-close
https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-new
https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-join
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-async
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-close-pid
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-watch-name
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-unwatch-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-own-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-unown-name
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-connect
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-handler-disconnect
https://developer.gnome.org/gobject/stable/gobject-Signals.html#g-signal-handler-disconnect
https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-open
https://developer.gnome.org/glib/stable/glib-File-Utilities.html#g-close
https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-new
https://developer.gnome.org/glib/stable/glib-Threads.html#g-thread-join
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-async
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-close-pid
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-close-pid
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-watch-name
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-watch-name
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-unwatch-name
https://developer.gnome.org/gio/stable/gio-Watching-Bus-Names.html#g-bus-unwatch-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-own-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-unown-name
https://developer.gnome.org/gio/stable/gio-Owning-Bus-Names.html#g-bus-unown-name

	Summary
	Code formatting
	Reformatting code

	Memory management
	Namespacing
	Modularity
	Pre- and post-condition assertions
	GError usage
	GList
	Magic values
	Asynchronous methods
	Enumerated types and booleans
	GObject properties
	Resource leaks

