
Apertis integration testing with LAVA

Contents1

Integration testing example . 22

Local testing . 23

Testing in LAVA . 34

Changes in testing script . 35

Create GIT repository for the test suite 46

Add the test into Apertis LAVA CI 57

LAVA1 is a testing system allowing the deployment of operating systems to8

physical and virtual devices, sharing access to devices between developers. As9

a rule tests are started in non-interactive unattended mode and LAVA provides10

logs and results in a human-readable form for analysis.11

As a common part of the development cycle we need to do some integration12

testing of the application and validate it’s behavior on different hardware and13

software platforms. LAVA provides the ability for Apertis to share a pool of14

test devices, ensuring good utilization of these resources in addition to providing15

automated testing.16

Integration testing example17

Let’s take the systemd service and systemctl CLI tool as an example to illustrate18

how to test an application with a D-Bus interface.19

The goal could be defined as follows:20

As a developer of the systemctl CLI tool, I want to ensure that21

systemctl is able to provide correct information about the system22

state.23

Local testing24

To simplify the guide we are testing only the status of systemd with the command25

below:26

$ systemctl is-system-running27

running28

It doesn’t matter if systemctl is reporting some other status, degraded for in-29

stance. The goal is to validate if systemctl is able to provide a proper status,30

rather than to check the systemd status itself.31

To ensure that the systemctl tool is providing the correct information we may32

check the system state additionally via the systemd D-Bus interface:33

$ gdbus call --system --dest=org.freedesktop.systemd1 --object-path "/org/freedesktop/systemd1" -34

-method org.freedesktop.DBus.Properties.Get org.freedesktop.systemd1.Manager SystemState35

(<'running'>,)36

1https://www.lavasoftware.org/

2

https://www.lavasoftware.org/
https://www.lavasoftware.org/

So, for local testing during development we are able to create a simple script37

validating that systemctl works well in our development environment:38

#!/bin/sh39

40

status=$(systemctl is-system-running)41

42

gdbus call --system --dest=org.freedesktop.systemd1 \43

--object-path "/org/freedesktop/systemd1" \44

--method org.freedesktop.DBus.Properties.Get org.freedesktop.systemd1.Manager SystemState | \45

grep "${status}"46

47

if [$? -eq 0]; then48

echo "systemctl is working"49

else50

echo "systemctl is not working"51

fi52

Testing in LAVA53

As soon as we are done with development, we push all changes to GitLab and CI54

will prepare a new version of the package and OS images. But we do not know55

if the updated version of systemctl is working well for all supported devices and56

OS variants, so we want to have the integration test to be run by LAVA.57

Since the LAVA is a part of CI and works in non-interactive unattended mode58

we can’t use the test script above as is.59

To start the test with LAVA automation we need to:60

1. Adopt the script for LAVA61

2. Integrate the testing script into Apertis LAVA CI62

Changes in testing script63

The script above is not suitable for unattended testing in LAVA due some issues:64

• LAVA relies on exit code to determine if test a passed or not. The exam-65

ple above always return the success code, only a human-readable string66

printed by the script provides an indication of the status of the test67

• if systemctl is-system-running call fails for some other reason (with a seg-68

fault for instance), the script will proceed further without that error being69

detected and LAVA will set the test as passed, so we will have a false70

positive result71

• LAVA is able to report separately for any part of the test suite – just need72

to use LAVA-friendly output pattern73

So, more sophisticated script suitable both for local and unattended testing in74

LAVA could be the following:75

3

#!/bin/sh76

77

Test if systemctl is not crashed78

testname="test-systemctl-crash"79

status=$(systemctl is-system-running)80

if [$? -le 4]; then81

echo "${testname}: pass"82

else83

echo "${testname}: fail"84

exit 185

fi86

87

Test if systemctl return non-empty string88

testname="test-systemctl-value"89

if [-n "$status"]; then90

echo "${testname}: pass"91

else92

echo "${testname}: fail"93

exit 194

fi95

96

Test if systemctl is reporting the same status as97

systemd exposing via D-Bus98

testname="test-systemctl-dbus-status"99

gdbus call --system --dest=org.freedesktop.systemd1 \100

--object-path "/org/freedesktop/systemd1" \101

--method org.freedesktop.DBus.Properties.Get \102

org.freedesktop.systemd1.Manager SystemState | \103

grep "${status}"104

if [$? -eq 0]; then105

echo "${testname}: pass"106

else107

echo "${testname}: fail"108

exit 1109

fi110

Now the script is ready for adding into LAVA testing. Pay attention to output111

format which will be used by LAVA to detect separate tests from our single112

script. The exit code from the testing script must be non-zero to indicate the113

test suite failure.114

The script above is available in the Apertis GitLab example repository2.115

2https://gitlab.apertis.org/sample-applications/test-systemctl

4

https://gitlab.apertis.org/sample-applications/test-systemctl
https://gitlab.apertis.org/sample-applications/test-systemctl

Create GIT repository for the test suite116

We assume the developer is already familiar with GIT version control system3117

and has an account for the Apertis GitLab4 as described in the Development118

Process guide5119

The test script must be accessible by LAVA for downloading. LAVA has support120

for several methods for downloading but for Apertis the GIT fetch is preferable121

since we are using separate versions of test scripts for each release.122

It is strongly recommended to create a separate repository with test scripts and123

tools for each single test suite.124

As a first step we need a fresh and empty GIT repository somewhere (for example125

in your personal space of the GitLab instance) which needs to be cloned locally:126

git clone git@gitlab.apertis.org:d4s/test-systemctl.git127

cd test-systemctl128

By default the branch name is set to main but Apertis automation require to use129

the branch name aimed at a selected release (for instance apertis/v2022dev1), so130

need to create it:131

git checkout HEAD -b apertis/v2022dev1132

Copy your script into GIT repository, commit and push it into GitLab:133

chmod a+x test-systemctl.sh134

git add test-systemctl.sh135

git commit -s -m "Add test script" test-systemctl.sh136

git push -u origin apertis/v2022dev1137

Add the test into Apertis LAVA CI138

Apertis test automation could be found in the GIT repository for Apertis test139

cases6, so we need to fetch a local copy and create a work branch wip/example140

for our changes:141

git clone git@gitlab.apertis.org:tests/apertis-test-cases.git142

cd apertis-test-cases143

git checkout HEAD -b wip/example144

1. Create test case description145

First of all we need to create the instruction for LAVA with following146

information:147

• where to get the test148

3https://em.pages.apertis.org/apertis-website/guides/version_control/
4https://gitlab.apertis.org/
5https://em.pages.apertis.org/apertis-website/guides/development_process/
6https://gitlab.apertis.org/tests/apertis-test-cases

5

https://em.pages.apertis.org/apertis-website/guides/version_control/
https://gitlab.apertis.org/
https://em.pages.apertis.org/apertis-website/guides/development_process/
https://em.pages.apertis.org/apertis-website/guides/development_process/
https://em.pages.apertis.org/apertis-website/guides/development_process/
https://gitlab.apertis.org/tests/apertis-test-cases
https://gitlab.apertis.org/tests/apertis-test-cases
https://gitlab.apertis.org/tests/apertis-test-cases
https://em.pages.apertis.org/apertis-website/guides/version_control/
https://gitlab.apertis.org/
https://em.pages.apertis.org/apertis-website/guides/development_process/
https://gitlab.apertis.org/tests/apertis-test-cases

• how to run the test149

Create the test case file test-cases/test-systemctl.yaml with your favorite150

editor:151

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

metadata:

name: test-systemctl

format: "Apertis Test Definition 1.0"

image-types:

minimal: [armhf, arm64, amd64]

image-deployment:

- OSTree

type: functional

exec-type: automated

priority: medium

maintainer: "Apertis Project"

description: "Test the systemctl."

expected:

- "The output should show pass."

install:

git-repos:

- url: https://gitlab.apertis.org/d4s/test-systemctl.git

branch: apertis/v2022dev1

run:

steps:

- "# Enter test directory:"

- cd test-systemctl

- "# Execute the following command:"

- lava-test-case test-systemctl --shell ./test-systemctl.sh

parse:

pattern: "(?P<test_case_id>.*):\\s+(?P<result>(pass|fail))"

This test is aimed to be run for an ostree-based minimal Apertis image152

for all supported architectures. However the metadata is mostly needed153

for documentation purposes.154

Action “install” points to the GIT repository as a source for the test, so155

LAVA will fetch and deploy this repository for us.156

Action “run” provides the step-by-step instructions on how to execute the157

6

test. Please note that it is recommended to use wrapper for the test for158

integration with LAVA.159

Action “parse” provides its own detection for the status of test results160

printed by script.161

The test case is available in the examples repository7.162

2. Push the test case to the GIT repository.163

This step is mandatory since the test case would be checked out by LAVA164

internally during the test preparation.165

git add test-cases/test-systemctl.yaml166

git commit -s -m "add test case for systemctl" test-cases/test-167

systemctl.yaml168

git push --set-upstream origin wip/example169

3. Add a job template to be run in lava. Job template contains all needed170

information for LAVA how to boot the target device and deploy the OS171

image onto it.172

Create the simple template lava/test-systemctl-tpl.yaml with your lovely173

editor:174

job_name: systemctl test on {{release_version}} {{pretty}} {{image_date}}175

{% if device_type == 'qemu' %}176

{% include 'common-qemu-boot-tpl.yaml' %}177

{% else %}178

{% include 'common-boot-tpl.yaml' %}179

{% endif %}180

181

- test:182

timeout:183

minutes: 15184

namespace: system185

name: common-tests186

definitions:187

- repository: https://gitlab.apertis.org/tests/apertis-test-188

cases.git189

revision: 'wip/example'190

from: git191

path: test-cases/test-systemctl.yaml192

name: test-systemctl193

Hopefully you don’t need to deal with the HW-related part, boot and194

deploy since we already have those instructions for all supported boards195

7https://gitlab.apertis.org/sample-applications/test-systemctl/-/blob/main/test-
cases/test-systemctl.yaml

7

https://gitlab.apertis.org/sample-applications/test-systemctl/-/blob/main/test-cases/test-systemctl.yaml
https://gitlab.apertis.org/sample-applications/test-systemctl/-/blob/main/test-cases/test-systemctl.yaml
https://gitlab.apertis.org/sample-applications/test-systemctl/-/blob/main/test-cases/test-systemctl.yaml

and Apertis OS images. See common boot template8 for instance.196

Please pay attention to revision – it must point to your development197

branch while you are working on your test.198

Instead of creating a new template, you may want to extend the appropri-199

ate existing template with additional test definition. In this case the next200

step could be omitted.201

The template above could be found in repository with examples9.202

4. Add the template into a profile.203

Profile file is mapping test jobs to devices under the test. So you need to204

add your job template into the proper list. For example we may extend the205

templates list named templates-minimal-ostree in file lava/profiles.yaml:206

.templates:207

- &templates-minimal-ostree208

- test-systemctl-tpl.yaml209

It is highly recommended to temporarily remove or comment out the rest210

of templates from the list to avoid unnecessary workload on LAVA while211

you’re developing the test.212

5. Configure and test the lqa tool213

For interaction with LAVA you need to have the lqa tool installed and214

configured as described in LQA10 tutorial.215

The tool is pretty easy to install in the Apertis SDK:216

$ sudo apt-get update217

$ sudo apt-get install -y lqa218

To configure the tool you need to create file ~/.config/lqa.yaml with the219

following authentication information:220

user: '<REPLACE_THIS_WITH_YOUR_LAVA_USERNAME>'221

auth-token: '<REPLACE_THIS_WITH_YOUR_AUTH_TOKEN>'222

server: 'https://lava.collabora.co.uk/'223

where user is your login name for LAVA and auth-token must be obtained224

from LAVA API: https://lava.collabora.co.uk/api/tokens/225

To test the setup just run command below, if the configuration is correct226

you should see your LAVA login name:227

8https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2022dev1/lava/
common-boot-tpl.yaml

9https://gitlab.apertis.org/sample-applications/test-systemctl/-/blob/main/lava/hello-
world-tpl.yaml

10https://em.pages.apertis.org/apertis-website/qa/lqa/

8

https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2022dev1/lava/common-boot-tpl.yaml
https://gitlab.apertis.org/sample-applications/test-systemctl/-/blob/main/lava/hello-world-tpl.yaml
https://em.pages.apertis.org/apertis-website/qa/lqa/
https://lava.collabora.co.uk/api/tokens/
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2022dev1/lava/common-boot-tpl.yaml
https://gitlab.apertis.org/tests/apertis-test-cases/-/blob/apertis/v2022dev1/lava/common-boot-tpl.yaml
https://gitlab.apertis.org/sample-applications/test-systemctl/-/blob/main/lava/hello-world-tpl.yaml
https://gitlab.apertis.org/sample-applications/test-systemctl/-/blob/main/lava/hello-world-tpl.yaml
https://em.pages.apertis.org/apertis-website/qa/lqa/

$ lqa whoami228

d4s229

6. Check the profile and template locally first.230

As a first step you have to define the proper profile name to use for the231

test in LAVA.232

Since LAVA is a part of Apertis OS CI, it requires some variables to be233

provided for using Apertis profiles and templates. Let’s define the board234

we will use for testing, as well as the image release and variant:235

release=v2022dev1236

version=v2022dev1.0rc2237

variant=minimal238

arch=armhf239

board=uboot240

baseurl="https://images.apertis.org"241

imgpath="release/$release"242

profile_name=apertis_ostree-${variant}-${arch}-${board}243

image_name=apertis_ostree_${release}-${variant}-${arch}-${board}_${version}244

And now we are able to submit the test in a dry-run mode:245

lqa submit -g lava/profiles.yaml -p ${profile_name} \246

-t visibility:"{'group': ['Apertis']}" -t priority:"high" \247

-t imgpath:${imgpath} -t release:${release} -t image_date:${version} \248

-t image_name:${image_name} -n249

There should not be any error or warning from lqa. You may want to add250

-v argument to see the generated LAVA job.251

It is recommended to set visibility variable to “Apertis” group during252

development to avoid any credentials/passwords leak by occasion. Set the253

additional variable priority to high allows you to bypass the jobs common254

queue if you do not want to wait for your job results for ages.255

7. Submit your first job to LAVA.256

Just repeat the lqa call above without the -n option. After the job sub-257

mission you will see the job ID:258

$ lqa submit -g lava/profiles.yaml -p "${profile_name}" -t visibility:"{'group': ['Apertis']}" -259

t priority:"high" -t imgpath:${imgpath} -t release:${release} -260

t image_date:${version} -t image_name:${image_name}261

Submitted job test-systemctl-tpl.yaml with id 3463731262

It is possible to check the job status by URL with the ID returned by the263

above command: https://lava.collabora.co.uk/scheduler/job/3463731264

The lqa tool generates the test job from local files, so you don’t need to265

push your changes to GIT until your test job is working as designed.266

9

https://lava.collabora.co.uk/scheduler/job/3463731

8. Push your template and profile changes.267

Once your test case works as expected you should restore all commented268

templates for profile, change the revision key in file lava/test-systemctl-269

tpl.yaml to a suitable target branch and submit your changes:270

git add lava/test-systemctl-tpl.yaml lava/profiles.yaml271

git commit -a -m "hello world template added"272

git push273

As a last step you need to create a merge request in GitLab. As soon as it gets274

accepted your test becomes part of Apertis testing CI.275

10

	Integration testing example
	Local testing
	Testing in LAVA
	Changes in testing script
	Create GIT repository for the test suite
	Add the test into Apertis LAVA CI

