
System updates and rollback

Contents1

Definitions 22

Base OS . 23

Applications . 24

Use cases 25

Embedded device on the field . 26

Typical system update . 27

Critical security update . 28

Applications and base OS with different release cadence 39

Shared base OS . 310

Reselling a device . 311

Non use cases 312

User modified device . 313

Unrecoverable hardware failure . 314

Unrecoverable file system corruption 315

Development . 316

Requirements 417

Minimal resource consumption . 418

Work on different hardware platforms 419

Every updated system should be identical to the reference 420

Atomic update . 421

Rolling back to the last known good state 422

Reset to clean state . 523

Update control interface . 524

Handling settings and data . 525

Existing system update mechanisms 526

Debian tools . 527

ChromeOS . 628

Approach 729

Advantages of using OSTree . 730

The OSTree model . 831

Resilient upgrade workflow . 1032

Online web-based OTA updates . 1133

Offline updates . 1434

Switching to the new branch . 1435

Online web-based OTA updates using OSTree Static Deltas 1536

OSTree security . 1637

Verified boot . 1638

Verified updates . 1739

Offline update files with signed metadata 1840

2

Securing OSTree updates download 1941

Controlling access to the updates repository 1942

Security concerns for offline updates over external media 1943

Settings . 2044

Error handling . 2145

Implementation 2346

The general flow . 2347

The boot count . 2348

The bootloader integration . 2449

The updater daemon . 2550

Detecting new available updates 2551

Initiating the update process . 2552

Reporting the status to interested clients 2553

Resetting the boot count . 2654

Marking deployments . 2655

Command line HMI . 2656

Update validation . 2757

Testing . 2758

Images can be updated . 2759

The update process is robust in case of errors 2760

Images roll back in case of error . 2761

Images are a suitable rollback target 2862

User and user data management 2863

Application management 2864

Application storage . 2965

Further developments 2966

Related Documents 3067

This document focuses on the system update mechanism, but also partly ad-68

dresses applications and how they interact with it.69

Definitions70

Base OS71

The core components of the operating system that are used by almost all Apertis72

users. Hardware control, resource management, service life cycle monitoring,73

networking74

Applications75

Components that work on top of the base OS and are specific to certain usages.76

3

Use cases77

A variety of use cases for system updates and rollback are given below.78

Embedded device on the field79

An Apertis device is shipped to a location that cannot be easily accessed by a80

technician. The device should not require any intervention in the case of errors81

during the update process and should automatically go back to a know-good82

state if needed.83

The update process should be robust against power losses and low voltage situ-84

ations, loss of connectivity, storage exhaustion, etc.85

Typical system update86

The user can update his system to run the latest published version of the soft-87

ware. This can be triggered either via periodic polling, upon user request, or88

any other suitable mean.89

Critical security update90

In the case of a critical security issue, the OEM could push an “update avail-91

able” message to some component in the device that would in turn trigger the92

update. This requires an infrastructure to reference all devices on the OEM93

side. The benefit compared to periodic polling is that the delay between the94

update publication and the update trigger is shortened.95

Applications and base OS with different release cadence96

Base OS releases involve many moving parts while application releases are sim-97

pler, so application authors want a faster release cadence decoupled from the98

base OS one.99

Shared base OS100

Multiple teams using the same hardware platform want to use the same base101

OS and differentiate their product purely with applications on top of it.102

Reselling a device103

Under specific circumstances, the user might want to reset his device to a clean104

state with no device-specific or personal data. This can happen before reselling105

the device or the user encountered an unexpected failure.106

4

Non use cases107

User modified device108

The user has modified his device. For example, they mounted the file system109

read write, and tweaked some configuration files to customize some features. As110

a result, the system update mechanism may no longer be functional.111

It might still be possible to restore the operating system to a factory state but112

the system update mechanism cannot guarantee it.113

Unrecoverable hardware failure114

An hardware failure has damaged the flash storage or another core hardware115

component and the system is no longer able to boot. Compensating for hardware116

failures is not part of the system update mechanism.117

Unrecoverable file system corruption118

The file system became corrupted due to a software bug or other failure and is119

not able to automatically correct the error. How to recover from that situation120

is not part of the system update and rollback mechanism.121

Development122

Developers need to modify and customize their environment in a way that often123

conflicts with the requirements for devices on the field.124

Requirements125

Minimal resource consumption126

Some devices only have a very limited amount of available storage, the system127

update mechanism must keep the impact storage requirement as low as possible128

and have a negligible impact at runtime.129

Work on different hardware platforms130

Different devices may use different CPU architectures, bootloaders, storage tech-131

nologies, partitioning schemas and file system formats.132

The system update mechanism must be able to work across them with mini-133

mal changes, ranging from single-partition systems running UBIFS on NAND134

devices to more common storage devices using traditional file systems over mul-135

tiple partitions.136

5

Every updated system should be identical to the reference137

The file system contents of the base OS on the updated devices must match138

exactly the file system used during testing to ensure that its behavior can be139

relied upon.140

This also means that applications must be kept separate from the base OS to141

be able to update them while keeping the base OS immutable.142

Atomic update143

To guarantee robustness in case of errors, every update to the system must be144

atomic.145

This means that if an update is not successful, it must not be partially installed.146

The failure must leave the device in the same state as if the update did not start147

and no intermediate state must exist.148

Rolling back to the last known good state149

If the system cannot boot correctly after an update has been installed success-150

fully it must automatically roll back to a known working version.151

Applications must be kept separated to be able to roll back the base OS while152

preserving them or to roll them back while keeping the base OS unchanged.153

The policy deciding what to roll back and when is product-specific and must154

be customizable. For instance, some products may chose to only roll back the155

base OS and keep applications untouched, some other products may choose to156

roll applications back as well.157

Rollbacks can be misused to perform downgrade attacks1 where the attacker158

purposefully initiates a rollback to an older version to leverage vulnerabilities159

fixed in the currently deployed version.160

For this reason care need to be taken about the conditions on which a rollback161

is to be initiated. For instance, if the system is not explicitly in the process of162

performing an upgrade, rollback should never be initiated even in case of boot163

failure as those are likely due to external reasons and rolling back to a previous164

version would not produce any benefit. Relatedly, once a specific version has165

been booted successfully, the system should never roll back to earlier versions.166

This also simplifies how applications have to deal with base OS updates: since167

the version of the successfully booted deployment can only monotonically in-168

crease, user applications that get launched after the successful system boot has169

been confirmed will never have to deal with downgrades.170

1https://en.wikipedia.org/wiki/Downgrade_attack

6

https://en.wikipedia.org/wiki/Downgrade_attack
https://en.wikipedia.org/wiki/Downgrade_attack

Reset to clean state171

The user must be able to restore his device to a clean state, destroying all user172

data and all device-specific system configuration.173

Update control interface174

An interface must be provided by the updates and rollback mechanism to allow175

HMI to query the current update status, and trigger updates and rollback.176

Handling settings and data177

System upgrades should keep both settings and data safe and intact as this178

process should be as transparent as possible to the end user. As described in179

preferences and persistence2 settings have a default value, which can change on180

upgrade, this results in the required solution being more complex than it might181

initially seem.182

Existing system update mechanisms183

Debian tools184

The Debian package management binds all the software in the system. This can185

be very convenient and powerful for administration and development, but this186

level of management is not required for final users of Apertis. For example:187

• Package administration command line tools are not required for final users.188

• No support for update roll back. If there is some package breakage, or189

broken upgrade, the only way to solve the issue is manually tracking the190

broken package and downgrading to a previous version, solving dependen-191

cies along the way. This can be an error prone manual process and might192

not be accomplished cleanly.193

In relation to system settings as defined in preferences and persistence3, Debian194

tools use a very simple approach. On package upgrades the dpkg will perform a195

check taking into account196

• current version default configuration file197

• new version default configuration file198

• current configuration file199

Different scenarios arise depending on whether user has applied changes to the200

configuration file. If current default configuration file is the same as current,201

then the user hadn’t change it, which implies that it can be safely upgraded (if202

it is required).203

2https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
3https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/

7

https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/

However, if the current default configuration file is different from current the204

user had applied some changes, so it can’t be upgraded silently. In this case205

dpkg asks the user to choose the version to use. This approach is not suitable206

for automated upgrades where there is no user interaction.207

To overcome some of these limitations modern systems tend to use overlays to208

have a read-only partition with default values and an upper layer with custom209

values.210

ChromeOS211

ChromeOS uses an A/B parallel partition approach. Instead of upgrading the212

system directly, it installs a fresh image into B partition for kernel and rootfs,213

then flag those to be booted next time.214

The partition metadata contains boot fields for the boot attempts (successful215

boots) and these are updated for every boot. If a predetermined number of216

unsuccessful boots is reached, the bootloader falls back to the other partition,217

and it will continue booting from there until the next upgrade is available. When218

the next upgrade becomes available it will replace the failing installation and219

will attempt booting from there again.220

There are some drawbacks to this approach when compared to OSTree:221

• The OS installations are not deduplicated, the system stores the entire222

contents of the A and B installations separately, where as OSTree based223

systems only store the base system plus a delta between this and any224

update using Unix hard links. This means an update to the system only225

requires disk space proportional to the changed files.226

• The A/B approach can be less efficient since it will need to add extra227

layers to work with different partitions, for example, using a specific layer228

to verify integrity of the block devices, where OSTree directly handles229

operating system views and a content addressable data store (file system230

user space) avoiding the need of having different layers.231

• Several partitions are usually required to implement this model, reducing232

the flexibility with which the storage space in the device can be utilized.233

Approach234

Package-based solutions fail to meet the robustness requirements, while dual235

partitioning schemes have storage requirements that are not viable for smaller236

devices.237

OSTree4 provides atomic updates on top of any POSIX-compatible file system238

including UBIFS on NAND devices, is not tied to a specific partitioning scheme239

efficiently handles the available storage.240

4http://ostree.readthedocs.io

8

http://ostree.readthedocs.io
http://ostree.readthedocs.io

No specific requirements are imposed on the partitioning schema. Use of241

the GUID Partition Table (GPT5) system for partition management is242

recommended for being flexible while having fail-safe measures, like keeping243

checksums of the partition layout and providing some redundancy in case244

errors are detected.245

Separating the system volume from the general storage volume, where applica-246

tions and user data are stored, is also recommended.247

Deployments

Applications

General storageSystemBoot

Boot config
- Kernel, dtb, initrd

- userspace

GPT Partitions248

More complex schemas can be used for instance by combining OSTree with read-249

only fallback partitions to handle file system corruption on the main system250

partition, but this document focuses on a OSTree-only setup that provides a251

good balance between complexity and robustness.252

Advantages of using OSTree253

• OSTree operates at the Unix file system layer and thus on top of any254

file system or block storage layout, including NAND flash setups, and in255

containers.256

• OSTree does not impose strict requirements on the partitioning scheme257

and can scale down to a single partition while fully preserving its resiliency258

guarantees, saving space on the device and avoiding extra layers of com-259

plexity (for example, to verify partition blocks). Depending on the setup,260

multiple partitions can still be used effectively to separate contents with261

different life cycles, for instance by storing user data on a different parti-262

tion than the system files managed by OSTree.263

• OSTree commits are centrally created offline (server side), and then they264

are deployed by the client. This gives much more control over what the265

devices actually run.266

• It can store multiple file systems trees in a single repository.267

• It is designed to implement fully atomic and resilient upgrades. If the268

system crashes or power is lost at any point during the update process,269

you will have either the old system, or the new one.270

• It clearly separate the OS from the device configuration and user data,271

so resetting the system to a clean state simply involves deleting some272

directories and their contents.273

5http://en.wikipedia.org/wiki/GUID_Partition_Table

9

http://en.wikipedia.org/wiki/GUID_Partition_Table
http://en.wikipedia.org/wiki/GUID_Partition_Table

• OSTree is implemented as a shared library, making it very easy to build274

higher level projects or tools on top of it.275

• The files in /usr contents are mounted read-only from subfolders of /os-276

tree/deploy, minimizing the chance of accidental deletions or changes.277

• OSTree has no impact on startup performance, nor does increase resource278

usage during runtime: since OSTree is just a different way to build the279

rootfs once it is built it will behave like a normal rootfs, making it very280

suitable for setups with limited storage.281

• OSTree already offers a mechanism suitable for offline updates using static282

deltas, which can be used for updates via a mass-storage device.283

• Security is at the core of OSTree, offering content replication incrementally284

over HTTPS via GPG signatures and using SHA256 hash checksums.285

• The mechanism to apply partial updates or full updates is exactly the286

same, the only difference is how the updates are generated on the server287

side.288

• OSTree can be used for both the base OS and applications, and its built-in289

hard link-based deduplication mechanism allow to share identical contents290

between the two, to keep them independent while having minimal impact291

on the needed storage. The Flatpak application framework is already292

based on OSTree.293

The OSTree model294

The conceptual model behind OSTree repositories is very similar to the one used295

by git, to the point that the introduction in the OSTree manual6 refers to it as296

“git for operating system binaries”.297

Albeit they take different tradeoffs to address different use-cases they both have:298

• file contents stored as blobs addressable by their hash, deduplicating them299

• file trees linking filenames to the blobs300

• commits adding metadata such as dates and comments on top of file trees301

• commits linked in a history tree302

• branches pointing to the most recent commit in a history tree, so that303

clients can find them304

Where git focuses on small text files, OSTree focuses on large trees of binary305

files.306

On top of that OSTree adds other layers which go beyond storing and distribut-307

ing file contents to fully handle operating system upgrades:308

• repositories - store one or more versions of the file system contents as309

described above310

• deployments - specific file system versions checked-out from the repository311

• stateroots - the combination of immutable deployments and writable di-312

rectories313

6https://ostree.readthedocs.io/en/stable/manual/introduction/

10

https://ostree.readthedocs.io/en/stable/manual/introduction/
https://ostree.readthedocs.io/en/stable/manual/introduction/

Each device hosts a local OSTree repository with one or more deployments314

checked out.315

Checked out deployments look like traditional root file systems. The bootloader316

points to the kernel and initramfs carried by the deployment which, after setting317

up the writable directories from the stateroot, are responsible for booting the318

system. The bootloader is not part of the updates and remains unchanged for319

the whole lifetime of the device as any changes has a high chance to make the320

system unbootable.321

• Each deployment is grouped in exactly one stateroot, and in normal cir-322

cumstances Apertis devices only have a single apertis stateroot.323

• A stateroot is physically represented in the /ostree/deploy/$stateroot di-324

rectory, /ostree/deploy/apertis in this case.325

• Each stateroot has exactly one copy of the traditional Unix /var directory,326

stored physically in /ostree/deploy/$stateroot/var. The /var directory is327

persisted during updates, when moving from one deployment to another328

and it is up to each operating system to manage this directory.329

• On each device there is an OSTree repository stored in /ostree/repo, and330

a set of deployments stored in /ostree/deploy/$stateroot/$checksum.331

• A deployment begins with a specific commit (represented by a SHA256332

hash) in the OSTree repository in /ostree/repo. This commit refers to a file333

system tree that represents the underlying basis of a deployment.334

• Each deployment is primarily composed of a set of hard links into the335

repository. This means each version is deduplicated; an upgrade process336

only costs disk space proportional to the new files, plus some constant337

overhead.338

• The read-only base OS contents are checked out in the /usr directory of339

the deployment.340

• Each deployment has its own writable copy of the configuration store /etc.341

• Deployments don’t have a traditional UNIX /etc but ship it instead as342

/usr/etc. When OSTree checks out a deployment it performs a 3-way343

merge using the old default configuration, the active system’s /etc, and344

the new default configuration.345

• Besides the exceptions of /var and /etc directories, the rest of the contents346

of the tree are checked out as hard links into the repository.347

• Both /etc and /var are persistent writable directories that get preserved348

across upgrades. Additionally since /home is used to store user specific349

data it is also writable and preseved across updates.350

Resilient upgrade workflow351

The following steps are performed to upgrade a system using OSTree:352

• The system boots using the existing deployment353

• A new version is made available as a new OSTree commit in the local354

repository, either downloading it from the network or by unpacking a355

11

static delta shipped on a mass storage device.356

• The data is validated for integrity and appropriateness.357

• The new version is deployed.358

• The system reboots into the new deployment.359

• If the system fails to boot properly (which should be determined by the360

system boot logic), the system can roll back to the previous deployment.361

During the upgrade process, OSTree will take care of many important details,362

like for example, managing the bootloader configuration and correctly merging363

the /etc directory.364

Each commit can be delivered to the target system over the air or by attaching a365

mass storage device. Network upgrades and mass storage upgrades only differ366

in the mechanism used by ostree to detect and obtain the update. In both cases367

the commit is first stored in a temporary directory, validated and only then it368

becomes part of the local OSTree repository before the real upgrade process369

starts by rebooting in the new deployment.370

Metadata such as EdDSA or GPG signatures can be attached to each commit to371

validate it, ensuring it is appropriate for the current system and it has not been372

corrupted or tampered. The update process must be interrupted at any point373

during the update process should any check yield an invalid result; the atomic374

upgrades mechanism in OSTree7 ensures that it is safe to stop the process at375

any point and no change is applied to the system up to the last step in the376

process.377

The atomic upgrades mechanism in OSTree ensures that any power failure dur-378

ing the update process leaves the current system state unchanged and the up-379

date process can be resumed re-using all the data that has already been already380

validated and included in the local repository.381

Online web-based OTA updates382

OSTree supports bandwidth-efficient retrieval of updates over the network.383

The basic workflow involves the actors below:384

• the image building pipelines pushes commits to an OSTree repository on385

each build;386

• a standard web server provides access over HTTPS to the OSTree reposi-387

tory handling it as a plain hierarchy of static files, with no special knowl-388

edge of OSTree;389

• the client devices poll the web server and retrieve updates when they get390

published.391

The following diagram shows how the data flows across services when using the392

web based OSTree upgrade mechanism.393

7https://ostree.readthedocs.io/en/stable/manual/atomic-upgrades

12

https://ostree.readthedocs.io/en/stable/manual/atomic-upgrades
https://ostree.readthedocs.io/en/stable/manual/atomic-upgrades
https://ostree.readthedocs.io/en/stable/manual/atomic-upgrades
https://ostree.readthedocs.io/en/stable/manual/atomic-upgrades

CI/CD Pipeline

Image Builder

Generate
OSTree
files

Build
Image

HTTPS
Pull OSTree

updates

SSH Push
OSTree

Updates

Static File Storage

OSTree Repository

Web Service (CDN Friendly)

Client Authentication

Device

libostree agent

Device

libostree agent

Device

libostree agent

394

Thanks to its repository format, OSTree client devices can efficiently query the395

repository status and retrieve only the changed contents without any OSTree-396

specific support in the web server, with the repository files being served as plain397

static files.398

This means that any web hosting provider can be used without any loss of399

efficiency.400

By only requiring static files, the web service can easily take advantage of CDN401

services to offer a cost efficient solution to get the data out to the devices in a402

way that is globally scalable.403

The authentication to the web service can be done via HTTP Basic authentica-404

13

tion, SSL/TLS client certificates, or any cookie-based mechanism that is most405

suitable for the chosen web service, as OSTree does not impose any constraint406

over plain HTTPS. OSTree separately checks the chain of trust linking the down-407

loaded updates to the keys trusted by the system update manager. See also the408

Controlling access to the updates repository and Verified updates sections in409

this regard.410

Monitoring and management of devices can be built using the same HTTPS411

access as used by OSTree or using completely separated mechanisms, enabling412

the integration of OSTree updates into existing setups.413

For instance, integration with roll out management suites like Eclipse hawkBit8414

can happen by disabling the polling in the OSTree updater and letting the man-415

agement suite tell OSTree which commit to download and from where through416

a dedicated agent running on the devices.417

OSTree
repository

reports metadata

(device id, current version, etc.)

initiates update

(specifies OSTree URL/commit id)

requests

specified

update

field
device

rollout
management

update gets

pulled and

deployed

reports update status

(in progres, applied, failed, etc.)

418

This has the advantage that the roll out management suite would be in complete419

control of which updates should be applied to which devices, implementing420

any kind of policies like progressive staged roll outs with monitoring from the421

backend with minimal integration.422

Only the retrieval and application of the actual update data on the device423

would be offloaded to the OSTree-based update system, preserving its network424

and storage efficiency and the atomicity guarantees.425

8https://www.eclipse.org/hawkbit/

14

https://www.eclipse.org/hawkbit/
https://www.eclipse.org/hawkbit/

Offline updates426

Some devices may not have any connectivity, or bandwidth requirements may427

make full system updates prohibitive. In these cases updates can be made avail-428

able offline by providing OSTree “static delta” files on external media devices429

like USB mass storage devices.430

The deltas are simple static files that contains all the differences between two431

specific OSTree commits. The user would download the delta file from a web432

site and put it in the root of an external drive. After the drive is mounted, the433

update management system would look for files with a specific name pattern in434

the root of the drive. If an appropriate file is found, it is checked to be a valid435

OSTree static bundle with the right metadata and, if that verification passes, the436

user would get a notification saying that updates are available from the drive.437

If the update file is corrupted, is targeted to other platforms or devices, or is438

otherwise invalid, the upgrade process must stop, leaving the system unchanged439

and a notification may be reported to the user about the identified issues.440

Static deltas can be partial if the devices are known beforehand to have a specific441

OSTree commit already available locally, or they can be full by providing the442

delta from the NULL empty commit, thus ensuring that the update can be applied443

without any assumption on the version running on the devices at the expense444

of a potential increase of the requirements on the mass storage device used to445

ship them. Both partial and full deltas leading to the same OSTree commit will446

produce identical results on the devices.447

Switching to the new branch448

The branches naming schema used in Apertis contains the major version, for in-449

stance: apertis/v2020/armhf-uboot/minimal. So for Apertis the “major upgrade”450

is technically considered as switching to another branch with a more recent451

Apertis version, for example apertis/v2021/armhf-uboot/minimal. By default such452

kinds of offline upgrade with switching to another branch is restricted by the453

update manager.454

Offline upgrades between branches (including “major updates”) consists of 2455

steps which should be a part of offline upgrade:456

1. Prepare the proper commit at build time457

This step is pretty simple – while preparing the relevant commit we just458

need to add the branch name(s) from which we are supposed to be able459

to upgrade to the current version. For example, while preparing commit460

for v2021 version just add following into ostree-commit action:461

ref-binding:462

- apertis/v2021/{{$architecture}}-{{$board}}/{{$type}}463

- apertis/v2020/{{$architecture}}-{{$board}}/{{$type}}464

15

this produce the commit compatible with version v2020 allowing to install465

the new OS version v2021 onto the board.466

2. Set correct refs in repository467

After successful boot of the updated version all refs in libostree repository468

are still pointing to the previous branch due the nature of offline upgrade.469

This needs to be fixed for proper detection of further upgrades, including470

updates over the air. It is the responsibility of the update manager to471

update the refs once the update has been determined to be successful.472

This functionality requires no changes to be made to previously released OSTree473

versions. The configuration that determines upgrade paths is held in the newer474

OSTree commit.475

Apertis currently only supports upgrades to newer versions, downgrades to older476

versions of Apertis are not supported.477

Online web-based OTA updates using OSTree Static Deltas478

The OSTree based OTA update mechanism described above, whilst taking full479

advantage of OSTree’s repositories, may not suit all users of Apertis. Where480

existing deployment services such as hawkBit are already deployed, a need to481

expose and maintain and extra service, the OSTree repository, may not be482

welcome.483

The ability of OSTree to perform updates using static deltas provides us with484

the option to serve these via the deployment infrastructure instead of serving485

updates from the OSTree repository.486

reports metadata

(device id, current version, etc.)

initiates update

(specifies update URL)

requests specified update

field
device

rollout
management

update gets pulled and deployed

reports update status

(in progres, applied, failed, etc.)

OSTree
static
deltas

487

Such an approach would likely need to utilize full OSTree deltas in order to488

ensure updates were viable on target devices regardless of how frequently they489

16

had previously been updated. As a result this approach does not take advantage490

of the bandwidth efficiency that would be presented by Online web-based OTA491

updates as previously discussed, however it does enable updates to be performed492

via existing installed deployment infrastructure.493

This is the approach currently used by the Apertis example implementation.494

OSTree security495

OSTree is a distribution method. It can secure the downloading of the update496

by verifying that it is properly signed using public key cryptography (EdDSA497

or GPG). It is largely orthogonal to verified boot, that is ensuring that only498

signed data is executed by the system from the bootloader, to the kernel and499

user space. The only interaction is that since OSTree is a file-based distribution500

mechanism, block-based verification mechanism like dm-verity cannot be used.501

OSTree can be used in conjunction with signed bootloader, signed kernel, and502

IMA (Integrity Measurement Architecture) to provide protection from offline503

attacks.504

Verified boot505

Verified boot is the process which ensures a device is only runs signed code.506

This is a layered process where each layer verifies signature of its upper layer.507

The bottom layer is the hardware, which contains a data area reserved to certifi-508

cates. The first step is thus to provide a signed bootloader. The processor can509

verify the signature of the bootloader before starting it. The bootloader then510

reads the boot configuration file. It can then run a signed kernel and initramfs.511

Once the kernel has started, the initramfs mounts the root file system.512

At the time of writing, the boot configuration file is not signed. It is read and513

verified by signed code, and can only point to signed components.514

Protecting bootloader, kernel and initramfs already guarantees that policies515

baked in those components cannot be subverted through offline attacks. By516

verifying the content of the rootfs the protection can be extended to user space517

components, albeit such protection can only be partial since device-local data518

can’t be signed on the server-side like the rest of the rootfs.519

To protect the rootfs different mechanisms are available: the block-based ones520

like dm-verity are fundamentally incompatible with file-based distribution meth-521

ods like OSTree, since they rely on the kernel to verify the signature on each522

read at the block level, guaranteeing that the whole block device has not been523

changed compared to the version signed at deployment time. Due to working524

on raw block devices, dm-verity is also incompatible with UBIFS and thus it is525

unsuitable for NAND devices.526

Other mechanisms like IMA (Integrity Measurement Architecture) work instead527

at the file level, and thus can be used in conjunction with UBIFS and OSTree528

17

on NAND devices.529

It is also possible to check that the deployed OSTree rootfs matches the server-530

provided signature without using any other mechanism, but unlike IMA and531

dm-verity such check would be too expensive to be done during file access.532

Verified updates533

Once a verified system is running, an OSTree update can be triggered. Apertis is534

using ed255199 variant of EdDSA signature. Ed25519 ensures that the commit535

was not modified, damaged, or corrupted.536

On the server, OSTree commits must be signed using ed25519 secret key. This537

occurs via the ostree sign --sign-type=ed25519 <COMMIT_ID> command line. The538

secret key could be provided via additional CLI parameter or file by using option539

--keys-file=<path_to_file>.540

OSTree expect what secret key consists of 64 bytes (32b seed + 32b public)541

encoded with base64 format. The ed25519 secret and public parts could be542

generated by numerous utilities including openssl, for instance:543

openssl genpkey -algorithm ed25519 -outform PEM -out ed25519.pem544

Since OSTree is not capable to use PEM format directly, it is needed to extract545

the secret and public keys10 from PEM file, for example:546

PUBLIC="$(openssl pkey -outform DER -pubout -in ${PEMFILE} | tail -547

c 32 | base64)"548

SEED="$(openssl pkey -outform DER -in ${PEMFILE} | tail -c 32 | base64)"549

As mentioned above, the secret key is concatenation of SEED and PUBLIC550

parts:551

SECRET="$(echo ${SEED}${PUBLIC} | base64 -d | base64 -w 0)"552

On the client, ed25519 is also used to ensure that the commit comes from a553

trusted provider since updates could be acquired through different methods like554

OTA over a network connection, offline updates on plug-in mass storage devices,555

or even mesh-based distribution mechanism. To enable the signature check,556

repository on the client must be configured by adding option sign-verify=true557

into the core or per-remote section, for instance:558

ostree config set 'remote "origin".sign-verify' "true"559

OSTree searches for files with valid public signatures in directories560

/usr/share/ostree/trusted.ed25519.d and /etc/ostree/trusted.ed25519.d.561

Any public key in a file in these directories will be trusted by the client. Each562

file may contain multiple keys, one base64-encoded public key per string. No563

private keys should be present in these directories.564

9https://ed25519.cr.yp.to/
10http://openssl.6102.n7.nabble.com/ed25519-key-generation-td73907.html

18

https://ed25519.cr.yp.to/
http://openssl.6102.n7.nabble.com/ed25519-key-generation-td73907.html
http://openssl.6102.n7.nabble.com/ed25519-key-generation-td73907.html
http://openssl.6102.n7.nabble.com/ed25519-key-generation-td73907.html
https://ed25519.cr.yp.to/
http://openssl.6102.n7.nabble.com/ed25519-key-generation-td73907.html

In addition it is possible to provide the trusted public key per-remote by565

adding into remote’s configuration path to the file with trusted public keys (via566

verification-file option) or even single key itself (via verification-key).567

In the OSTree configuration, the default is to require commits to be signed.568

However, if no public key is available, no any commit can be trusted.569

Offline update files with signed metadata570

Starting with version v2020.7 libostree supports delta bundles with signed meta-571

data11, which allows to ensure that the whole delta bundle comes from a trusted572

source. Previous versions only allowed to assert the provenance of the commits573

in the bundle, leaving the metadata unverified.574

Support for delta bundles with signed metadata is available in the Apertis Up-575

date Manager since version 0.2020.20, which can also handle delta bundles with576

unsigned metadata. Previous versions of the Apertis Update Manager also577

supported an experimental format for signed metadata, which has now been578

dropped in favor of the format that has been landed upstream in libostree579

2020.7.580

To improve the security on target devices the repository configuration must have581

additional option core.sign-verify-deltas set to true:582

ostree config set core.sign-verify-deltas "true"583

This is forcing AUM and libostree to accept only update bundles with signed584

metadata.585

Compatibility with upgrades586

Until v2021pre there were no support of upgrade bundles with signed metadata587

in Apertis.588

For upgrading from version v2020 to v2021 we have produced additional upgrade589

bundle. This additional bundle has unsigned metadata, allowing offline upgrades590

from the previous release. So for v2021, and only for v2021 we have 3 update591

bundle types:592

• *.delta – depending on CI it may have signed or unsigned metadata. This593

version is uploaded into hawkBit server and used for tests.594

• *.delta.enc – encrypted bundle containing delta file above.595

• *.compat-v2020.delta – bundle with unsigned metadata compatible with596

previous Apertis release. This file should be used for upgrading the Apertis597

version v2020.598

11https://github.com/ostreedev/ostree/pull/1985

19

https://github.com/ostreedev/ostree/pull/1985
https://github.com/ostreedev/ostree/pull/1985
https://github.com/ostreedev/ostree/pull/1985
https://github.com/ostreedev/ostree/pull/1985

Securing OSTree updates download599

OSTree supports “pinned TLS”. Pinning consist of storing the public key of the600

trusted host on the client side, thus eliminating the need for a trust authority.601

TLS can be configured in the remote configuration on the client using the follow-602

ing entries:603

tls-ca-path604

Path to file containing trusted anchors instead of the system CA database.605

Once a key is pinned, OSTree is ensured that any download is coming from a606

host which key is present in the image.607

The pinned key can be provided in the disk image, ensuring every flashed device608

is able to authenticate updates.609

Controlling access to the updates repository610

TLS also permit the OSTree client to authenticate itself to the server before611

being allowed to download a commit. This can also be configured in the remote612

configuration on the client using the following entries:613

tls-client-cert-path614

Path to file for client-side certificate, to present when making requests to615

this repository.616

tls-client-key-path617

Path to file containing client-side certificate key, to present when making618

requests to this repository.619

Access to remote repositories can also be controlled via HTTP cookies. The620

ostree remote add-cookie and ostree remote delete-cookie commands will up-621

date a per-remote lookaside cookie jar, named $remotename.cookies.txt. In this622

model, the client first obtains an authentication cookie before communicating623

this cookie to the server along with its update request.624

The choice between authentication via TLS client-side certificates or HTTP625

cookies can be done depending on the chosen server-side infrastructure.626

Provisioning authentication keys on a per-device basis at the end of the deliv-627

ery chain is recommended so each device can be identified and access granted628

or denied at the device granularity. Alternatively it is possible to deploy au-629

thentication keys at coarser granularities, for instance one for each device class,630

depending on the specific use-case.631

Security concerns for offline updates over external media632

OSTree static deltas includes the detached metadata with signature for the633

contained commit to check if the commit is provided by a valid provider and its634

integrity.635

20

The signed commit is unpacked to a temporary directory and verified by OSTree636

before being integrated in the OSTree repository on the device, from which it637

can be deployed at the next reboot.638

This is the same mechanism used for commit verification when doing OTA639

upgrades from remote servers and provides the same features and guarantees.640

Usage of inlined signed metadata ensures that the provided update file is aimed641

to the target platform or device.642

Updates from external media present a security problem not present for directly643

downloaded updates. Simply verifying the signature of a file before decompress-644

ing is an incomplete solution since a user with sufficient skill and resources645

could create a malicious USB mass storage device that presents different data646

during the first and second read of a single file – passing the signature test, then647

presenting a different image for decompression.648

The content of the update file is extracted into the temporary directory and the649

signature is checked for the extracted commit tree.650

Settings651

As described in preferences and persistence12 there are different types of settings652

which should be preserved across updates. The setting should either be kept653

intact or updated to reflect new logic of the application.654

When using OSTree, most of the file system is read-only. Since system settings655

need write support, the /etc and /var partitions are configured to be read-write.656

This also applies to the /home partition, with it being configured as read-write657

so user data and �settings can be preserved.658

During an OSTree upgrade, a new commit is applied on the OSTree repo, this659

provides the new content that will be used for the read-only portions of the660

rootfs, but does not modify the read-write parts. To handle the upgrade of661

system settings stored in /etc, a copy of its default values are kept in /usr/etc662

which is updated with the new commit. Thanks to this information OSTree can663

detect the files that have been changed and apply a 3-way merge, to update the664

/etc.665

This process allows to update settings to new defaults for files that were not666

modified and keep intact those that were.667

Applications are encouraged to handle settings adaptation to new version follow-668

ing the guidelines described in user and user data management and preference669

and persistence13.670

12https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
13https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/

21

https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://em.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/

Error handling671

If for any reason the update process fails to complete, the update will be black-672

listed to avoid re-attempting it. Another update won’t be automatically at-673

tempted until a newer update is made available.674

The only exception from this rule is failure due incorrect signature check. The675

commit could be re-signed with the key not known for the client at this moment,676

and as soon as client acquire the new public key blacklist mechanism shouldn’t677

prevent the update.678

It is possible that an update is successfully installed yet fail to boot, resulting in679

a rollback. In the event of a rollback the update manager must detect that the680

new update has not been correctly booted, and blacklist the update so it is not681

attempted again. To detect a failed boot a watchdog mechanism can be used.682

The failed updates can then be blacklisted by appending their OSTree commit683

ids to a list.684

This policy prevents a device from getting caught in a loop of rollbacks and685

failed updates at the expense of running an old version of the system until a686

newer update is pushed.687

The most convenient storage location for the blacklist is the user storage area,688

since it can be written at runtime. As a side effect of storing the blacklist there,689

it will automatically be cleared if the system is reset to a clean state.690

22

Update begins

Create new OStree branch

Download content

Create new deployment

Generate new boot config

Reboot

Update

Successfully

Installed

691

23

Implementation692

This section provides some more details about the implementation of offline693

system updates and rollback in Apertis, which is split in three main components:694

• the updater daemon695

• the bootloader integration696

• the command-line HMI697

The general flow698

The Apertis update process deals with selecting the OSTree deployment to boot,699

rolling back to known-good deployments in case of failure and preparing the new700

deployment on updates:701

Firmware
begins

Did the current
deployment fail to boot?

(i.e. bootcount >=
bootlimit)

Boot the current
deployment

Successful
boot?

Reset bootcount
and

upgrade_available
Check for updates

Import update in
the local OSTree

repository

Successfully imported
the update?

Blacklist update
and drop it

Boot the rollback
deployment

If upgrade_available
is set, undeploy and
blacklist the update

Deploy update, set
update_available

Request reboot /
wait for reboot

no

no

no

Start

yes

yes

yes

found update

702

While the underlying approach differs due to the use of OSTree in Apertis over703

the dual-partition approach chosen by ChromeOS and the different bootloaders,704

the update/rollback process is largely the same as the one in ChromeOS14.705

The boot count706

To keep track of failed updates the system maintains a persistent counter that707

it is increased every time a boot is attempted.708

14https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-
autoupdate#TOC-Diagram

24

https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate#TOC-Diagram
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate#TOC-Diagram
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate#TOC-Diagram

Once a boot is considered successful depending on project-specific policies (for709

instance, when a specific set of services has been started with no errors) the710

boot count is reset to zero.711

This boot counter needs to be handled in two places:712

• in the bootloader, which boots the current OSTree deployment if the713

counter is zero and initiates a rollback otherwise714

• in the updater, which needs to reset it to zero once the boot is considered715

successful716

Using the main persistent storage to store the boot count is viable for most717

platform but would produce too much wear on platforms using NAND devices.718

In those cases the boot count should be stored on another platform-specific719

location which is persistent over warm reboots, there’s no need for it to persist720

over power losses.721

However, in the reference implementation the focus is on the most general solu-722

tion first, while being flexible enough to accommodate other solutions whenever723

needed.724

The bootloader integration725

Since bootloaders are largely platform-specific the integration needs to be done726

per-platform.727

For the SabreLite ARM 32bit platform, integration with the U-Boot15 boot-728

loader is needed.729

OSTree already provides dedicated hooks to update the u-boot environment to730

point it to the latest deployment.731

Two separate boot commands are used to start the system: the default one boots732

the latest deployment, while the alternate one boots the previous deployment.733

Before rebooting to a new deployment the boot configuration file is switched734

and the one for the new deployment is made the default, while the older one is735

put into the location pointed by the alternate boot command.736

When a failure is detected by checking the boot count while booting the latest737

deployment, the system reboots using the alternate boot command into the738

previous deployment where the rollback is completed.739

Once the boot procedure completes successfully the boot count gets reset and740

stopped, so failures in subsequent boots won’t cause rollbacks which may worsen741

the failure.742

If the system detects that a rollback has been requested, it also need to make743

the rollback persistent and prevent the faulty updates to be tried again. To do744

15http://www.denx.de/wiki/U-Boot/WebHome

25

http://www.denx.de/wiki/U-Boot/WebHome
http://www.denx.de/wiki/U-Boot/WebHome

so, it adds any deployment more recent than the current one to a local blacklist745

and then drops them.746

The updater daemon747

The updater daemon is responsible for most of the activities involved, such as748

detecting available updates, initiating the update process and managing the749

boot count.750

It handles both online OTA updates and offline updates made available on751

locally mounted devices.752

Detecting new available updates753

For offline updates, the GVolumeMonitor16 API provided by GLib/GIO is used754

to detect when a mass storage device is plugged into the device, and the GFile17755

GLib/GIO API is used to scan for the offline update stored as a plain file in the756

root of the plugged file system named static-update.bundle.757

For online OTA updates, the OstreeSysrootUpgrader18 is used to poll the remote758

repository for new commits in the configured branch.759

When combined with roll out management systems like Eclipse hawkBit19, the760

roll out management agent on the device will initiate the upgrade process with-761

out the need for polling.762

Initiating the update process763

Once the update is detected, it is verified and compared against a local blacklist764

to skip updates that have already failed in the past (see [Update validation]).765

In the offline case the static delta file is checked for consistency before being766

unpacked in the local OSTree repository.767

During online updates, files are verified as they get downloaded.768

In both cases the new update results in a commit in the local OSTree repository769

and from that point the process is identical: a new deployment is created from770

the new commit and the bootloader configuration is updated to point to the771

new deployment on the next boot.772

Reporting the status to interested clients773

The updater daemon exports a simple D-Bus interface which allows to check774

the state of the update process and to mark the current boot as successful.775

16https://developer.gnome.org/gio/stable/GVolumeMonitor.html
17https://developer.gnome.org/gio/stable/GFile.html
18https://github.com/ostreedev/ostree/blob/master/src/libostree/ostree-sysroot-

upgrader.c
19https://www.eclipse.org/hawkbit/

26

https://developer.gnome.org/gio/stable/GVolumeMonitor.html
https://developer.gnome.org/gio/stable/GFile.html
https://github.com/ostreedev/ostree/blob/master/src/libostree/ostree-sysroot-upgrader.c
https://www.eclipse.org/hawkbit/
https://developer.gnome.org/gio/stable/GVolumeMonitor.html
https://developer.gnome.org/gio/stable/GFile.html
https://github.com/ostreedev/ostree/blob/master/src/libostree/ostree-sysroot-upgrader.c
https://github.com/ostreedev/ostree/blob/master/src/libostree/ostree-sysroot-upgrader.c
https://www.eclipse.org/hawkbit/

Resetting the boot count776

During the boot process the boot count is reset to zero using an interface that777

abstracts over the platform-specific approach.778

While product-specific policies dictate when the boot should be considered779

successful, the reference images consider a boot to be successful if the multi-780

user.target target is reached.781

Marking deployments782

Rolled back deployments are added to a blacklist to avoid trying them again783

over and over.784

Deployments that have booted successfully get marked as known good so that785

they are never rolled back, even if at a later point a failure in the boot process is786

detected. This is to avoid transient issues causing an unwanted rollback which787

may make the situation worse.788

To do so, the boot counting is stopped once the current boot is considered789

successful, effectively marking the current boot as known-good without the need790

to maintain a whitelist and synchronize it with the bootloader.791

As a part of marking the deployment as successful the updater daemon checks792

the target branches from the OSTree commit metadata. If the booted deploy-793

ment contains references to several branches, the updater daemon determines794

which branch has the highest version and resets all refs and the origin to that795

branch. Using the branches naming scheme used in Apertis, this could be con-796

sidered as “major upgrade” of the system. From this point on, the system is797

fully switched to the new branch and accepts only upgrades created in the new798

branch.799

Command line HMI800

A command line tool is provided to query the status using the org.apertis.ApertisUpdateManager801

D-Bus API20:802

$ updatectl803

** Message: Network connected: No804

** Message: Upgrade status: Deploying805

The current API exposes information about whether the updater is idle, an806

update is being checked, retrieved or deployed, or whether a reboot is pending807

to switch to the updated system.808

It can also be used to mark the boot as successful:809

$ updatectl --mark-update-successful810

20https://gitlab.apertis.org/pkg/apertis-update-manager/-/blob/apertis/v2021/data/
apertis-update-manager-dbus.xml

27

https://gitlab.apertis.org/pkg/apertis-update-manager/-/blob/apertis/v2021/data/apertis-update-manager-dbus.xml
https://gitlab.apertis.org/pkg/apertis-update-manager/-/blob/apertis/v2021/data/apertis-update-manager-dbus.xml
https://gitlab.apertis.org/pkg/apertis-update-manager/-/blob/apertis/v2021/data/apertis-update-manager-dbus.xml
https://gitlab.apertis.org/pkg/apertis-update-manager/-/blob/apertis/v2021/data/apertis-update-manager-dbus.xml
https://gitlab.apertis.org/pkg/apertis-update-manager/-/blob/apertis/v2021/data/apertis-update-manager-dbus.xml

Update validation811

Before installing updates the updater check their validity and appropriateness812

for the current system, using the metadata carried by the update itself as pro-813

duced by the build pipeline. It ensures that the update is appropriate for the814

system by verifying that the collection id in the update matches the one config-815

ured for the system. This prevents installing an update meant for a different816

kind of device, or mixing variants. The updater also checks that the update ver-817

sion is newer than the one on the system, to prevent downgrade attacks where818

a older update with known vulnerabilities is used to gain privileged access to a819

target.820

Testing821

Testing ensures that the following system properties for each image are main-822

tained:823

• the image can be updated if a newer update bundle is plugged in824

• the update process is robust in case of errors825

• the image initiates a rollback to a previous deployment if an error is de-826

tected on boot827

• the image can complete a rollback initiated from a later deployment828

To do so, a few components are needed:829

• system update bundles have to be built as part of the daily build pipeline830

• a know-good test update bundle with a very large version number must831

be create to test that the system can update to it832

At least initially, testing is done manually. Automation from LAVA will be833

researched later.834

Images can be updated835

Plugging a device with the known-good test update on it bundle the expectation836

is that the system detects it, initiates the update and on reboot the deployment837

from the known-good test bundle is used.838

The update process is robust in case of errors839

To test that errors during the update process don’t affect the system, the device840

is unplugged while the update is in progress. Re-plugging it after that checks841

that updates are gracefully restarted after transient errors.842

Images roll back in case of error843

Injecting an error in the boot process checks that the image initiates the roll844

back to a previous deployment. Since a newly-flashed image doesn’t have any845

28

previous deployment available, one needs to be manually set up beforehand by846

downloading an older OSTree commit.847

Images are a suitable rollback target848

A known-bad deployment similar to the known-good one can be used to ensure849

that the current image works as intended when it is the destination of a rollback850

initiated by another deployment.851

After updating to the known-bad deployment the system should rollback to the852

version under test, which should then complete the rollback by cleaning the853

boot count, blacklisting the failed update and undeploy it.854

User and user data management855

As described in the Multiuser21 design document, Apertis is meant to accom-856

modate multiple users on the same device, using existing concepts and features857

of the several open source components that are being adopted.858

All user data should be kept in the general storage volume on setups where it is859

available, as it enables simpler separation of concerns, and a simpler implemen-860

tation of user data removal.861

Rolling back user and application data cannot be generally applied and no862

existing general purpose system supports it. Applications must be prepared to863

handle configuration and data files coming from later versions and handle that864

gracefully, either ignoring unknown parameter or falling back to the default865

configuration if the provided one is not usable.866

Specific products can choose to hook to the update system and manage their867

own data rollback policies.868

Application management869

Application management on Apertis has requirements that the main update870

management system does not:871

• It is unreasonable to expect a system restart after an application update.872

• Each application must be tracked independently for rollbacks. System873

updates only track one “stream” of rollbacks, where the application update874

framework must track many.875

Flatpak matches the requirements and is also based on OSTree. The ability876

to deduplicate contents between the system repository and the applications877

decouples applications from the base OS yet keeping the impact on storage878

consumption minimal.879

21https://em.pages.apertis.org/apertis-website/concepts/multiuser/

29

https://em.pages.apertis.org/apertis-website/concepts/multiuser/
https://em.pages.apertis.org/apertis-website/concepts/multiuser/

Application storage880

Applications can be stored per-device or per-user depending on the needs of the881

product.882

An application may require storage space for personal settings, license informa-883

tion, caches, and any manner of long term private storage. These files should884

generally not be easily accessible to the user as directly modifying them could885

have detrimental effects on the application.886

Application storage requirements can be divided into broad groups:887

• An area for application exports to integrate with the system. This is888

managed by the application manager and not directly by applications889

themselves.890

• User specific application data – for settings and any other per-user files.891

In the event of an application rollback, depending on the product this data892

may get rolled back with the application or the application needs to deal893

with potentially mismatching versions.894

• Application specific application data – for data that is rolled back with895

an application but isn’t tied to a user account – such as voice samples or896

map data. This data should be handled in the same way as user specific897

application data.898

• Cache – easily recreated data. To save space, this should not be stored for899

rollback purposes, and should be cleared on a rollback in case applications900

change their cache data formats between versions.901

• Storage for files in standard formats that aren’t tied to specific applica-902

tions, as explained in the Multiuser22 design, this storage is shared between903

all users. This data should be exempt from the rollback system.904

Further developments905

• Handling a larger threat model using The Update Framework Specifica-906

tion23 / Uptane24 with Aktualizr25907

• Integrating with server side management services like Eclipse hawkBit26908

• Hardware-assisted verified boot27 with TPM/OP-TEE909

22https://em.pages.apertis.org/apertis-website/concepts/multiuser/
23https://github.com/theupdateframework/specification/blob/master/tuf-spec.md
24https://uptane.github.io/
25https://foundries.io/insights/2018/05/25/ota-part-1/
26https://www.eclipse.org/hawkbit/
27https://www.chromium.org/chromium-os/chromiumos-design-docs/verified-boot

30

https://em.pages.apertis.org/apertis-website/concepts/multiuser/
https://github.com/theupdateframework/specification/blob/master/tuf-spec.md
https://github.com/theupdateframework/specification/blob/master/tuf-spec.md
https://github.com/theupdateframework/specification/blob/master/tuf-spec.md
https://uptane.github.io/
https://foundries.io/insights/2018/05/25/ota-part-1/
https://www.eclipse.org/hawkbit/
https://www.chromium.org/chromium-os/chromiumos-design-docs/verified-boot
https://em.pages.apertis.org/apertis-website/concepts/multiuser/
https://github.com/theupdateframework/specification/blob/master/tuf-spec.md
https://uptane.github.io/
https://foundries.io/insights/2018/05/25/ota-part-1/
https://www.eclipse.org/hawkbit/
https://www.chromium.org/chromium-os/chromiumos-design-docs/verified-boot

• File system-level integrity checks Integrity Measurement Architecture910

(IMA)/Extended Verification Module (EVM)28911

• Add fail safe partition to handle file system corruption912

Related Documents913

A survey of system update managers:914

• https://wiki.yoctoproject.org/wiki/System_Update915

The OSTree bootable file systems tree store:916

• http://ostree.readthedocs.io917

The U-Boot Bootloader:918

• http://www.denx.de/wiki/U-Boot/WebHome919

The ChromeOS auto-update system:920

• https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-921

autoupdate922

28https://sourceforge.net/p/linux-ima/wiki/Home/

31

https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://wiki.yoctoproject.org/wiki/System_Update
http://ostree.readthedocs.io
http://www.denx.de/wiki/U-Boot/WebHome
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://sourceforge.net/p/linux-ima/wiki/Home/

	Definitions
	Base OS
	Applications

	Use cases
	Embedded device on the field
	Typical system update
	Critical security update
	Applications and base OS with different release cadence
	Shared base OS
	Reselling a device

	Non use cases
	User modified device
	Unrecoverable hardware failure
	Unrecoverable file system corruption
	Development

	Requirements
	Minimal resource consumption
	Work on different hardware platforms
	Every updated system should be identical to the reference
	Atomic update
	Rolling back to the last known good state
	Reset to clean state
	Update control interface
	Handling settings and data

	Existing system update mechanisms
	Debian tools
	ChromeOS

	Approach
	Advantages of using OSTree
	The OSTree model
	Resilient upgrade workflow
	Online web-based OTA updates
	Offline updates
	Switching to the new branch

	Online web-based OTA updates using OSTree Static Deltas
	OSTree security
	Verified boot
	Verified updates
	Offline update files with signed metadata
	Securing OSTree updates download
	Controlling access to the updates repository
	Security concerns for offline updates over external media

	Settings
	Error handling

	Implementation
	The general flow
	The boot count
	The bootloader integration
	The updater daemon
	Detecting new available updates
	Initiating the update process
	Reporting the status to interested clients
	Resetting the boot count
	Marking deployments

	Command line HMI
	Update validation
	Testing
	Images can be updated

	The update process is robust in case of errors
	Images roll back in case of error
	Images are a suitable rollback target

	User and user data management
	Application management
	Application storage

	Further developments
	Related Documents

