
Sensors and actuators

Contents1

Terminology and concepts . 22

Vehicle . 23

Intra-vehicle network . 24

Inter-vehicle network . 25

Sensor . 36

Actuator . 37

Device . 38

Use cases . 39

Augmented reality parking . 310

Virtual mechanic . 311

Petrol station finder . 412

Sightseeing application bundle . 413

Changing bundle functionality when driving at speed 414

Changing audio volume with vehicle or cabin noise 415

Night mode . 516

Weather feedback or traffic jam feedback 517

Insurance bundle . 518

Driving setup bundle . 519

Odour detection . 620

Air conditioning control . 621

Agricultural vehicle . 622

Roof box . 623

Truck installations . 724

Compromised application bundle 725

Ethernet intra-vehicle network 726

Development against the SDK . 727

Non-use-cases . 728

Bluetooth wrist watch and the Internet of Things 729

Car-to-car and car-to-infrastructure communications 830

Buddied and vehicle fleet communications 831

Requirements . 932

Enumeration of devices . 933

Enumeration of vehicles . 934

Retrieving data from sensors . 935

Sending data to actuators . 936

Network independence . 937

Bounded latency of processing sensor data 1038

Extensibility for OEMs . 1039

Third-party backends . 1040

Third-party backend validation 1041

Notifications of changes to sensor data 1042

Uncertainty bounds . 1143

Failure feedback . 1144

Timestamping . 1145

2

Triggering bundle activation . 1146

Bulk recording of sensor data . 1247

Sensor security . 1248

Actuator security . 1249

App store knowledge of device requirements 1250

Accessing devices on multiple vehicles 1251

Third-party accessories . 1352

SDK hardware support . 1353

Background on intra-vehicle networks 1354

Existing sensor systems . 1355

W3C Vehicle Information Service Specification (VISS) 1456

GENIVI Web API Vehicle 1457

Apple HomeKit . 1458

Apple External Accessory API 1559

iOS CarPlay . 1660

Android Auto . 1661

MirrorLink . 1662

Android Sensor API . 1763

Automotive Message Broker . 1764

AllJoyn . 1865

Approach . 1866

Overall architecture . 1967

Vehicle device daemon . 1968

Hardware and app APIs . 2069

Hardware API compliance testing 2470

SDK API compliance testing and simulation 2571

SDK hardware . 2572

Trip logging of sensor data . 2673

Properties vs devices . 2674

Property naming . 2775

High bandwidth or low latency sensors 2776

Timestamps and uncertainty bounds 2877

Registering triggers and actions 2878

Bulk recording of sensor data . 2979

Security . 2980

Suggested roadmap . 3681

Requirements . 3782

Open questions . 3883

Summary of recommendations . 3984

Sensors and Actuators API 4085

Rhosydd API Current State . 4086

Considerations to align Rhosydd to the new VISS API 4087

New vs Old Specification . 4188

Rhosydd New Changes . 4189

Advantages . 4290

3

Conclusion . 4291

Appendix: W3C API . 4292

This documents possible approaches to designing an API for exposing vehicle93

sensor information and allowing interaction with actuators to application bun-94

dles on an Apertis system.95

The major considerations with a sensors and actuators API are:96

• Bandwidth and latency of sensor data such as that from parking cameras97

• Enumeration of sensors and actuators98

• Support for multiple vehicles or accessories99

• Support for third-party and OEM accessories and customisations100

• Multiplexing of access to sensors101

• Privilege separation between application bundles using the API102

• Policy to restrict access to sensors (privacy sensitive)103

• Policy to restrict access to actuators (safety critical)104

Terminology and concepts105

Vehicle106

For the purposes of this document, a vehicle may be a car, car trailer, motorbike,107

bus, truck tractor, truck trailer, agricultural tractor, or agricultural trailer,108

amongst other things.109

Intra-vehicle network110

The intra-vehicle network connects the various devices and processors through-111

out a vehicle. This is typically a CAN or LIN network, or a hierarchy of such112

networks. It may, however, be based on Ethernet or other protocols.113

The vehicle network is defined by the OEM, and is statically defined — all de-114

vices which are supported by the network have messages or bandwidth allocated115

for them at the time of manufacture. No devices which are not known at the116

time of manufacture can be supported by the vehicle network.117

Inter-vehicle network118

An inter-vehicle network connects two or more physically connected vehicles119

together for the purposes of exchanging information. For example, a network120

between a truck tractor and trailer.121

An inter-vehicle network (for the purposes of this document) does not cover122

transient communications between separate cars on a motorway, for example;123

or between a vehicle and static roadside infrastructure it passes. These are124

4

car-to-car (C2C) and car-to-infrastructure (C2X) communications, respectively,125

and are handled separately.126

Sensor127

A sensor is any input device which is connected to the vehicle’s network but128

which is not a direct part of the dashboard user interface. For example: parking129

cameras, ultrasonic distance sensors, air conditioning thermometers, light level130

sensors, etc.131

Actuator132

An actuator is any output device which is connected to the vehicle’s network133

but which is not a direct part of the dashboard user interface. For example:134

air conditioning heater, door locks, electric window motors, interior lights, seat135

height motors, etc.136

Device137

A sensor or actuator.138

Use cases139

A variety of use cases for application bundle usage of sensor data are given140

below. Particularly important discussion points are highlighted at the bottom141

of each use case.142

Augmented reality parking143

When parking, the feed from a rear-view camera should be displayed on the144

screen, with an overlay showing the distance between the back of the vehicle145

and the nearest object, taken from ultrasonic or radar distance sensors.146

The information from the sensors has to be synchronised with the camera, so147

correct distance values are shown for each frame. The latency of the output148

image has to be low enough to not be noticed by the driver when parking at149

low speeds (for example, 5km·h).150

Virtual mechanic151

Provide vehicle status information such as tyre pressure, engine oil level, washer152

fluid level and battery status in an application bundle which could, for example,153

suggest routine maintenance tasks which need to be performed on the vehicle.154

(Taken from http://www.w3.org/2014/automotive/vehicle_spec.html#h2_155

abstract.)156

5

http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract
http://www.w3.org/2014/automotive/vehicle_spec.html#h2_abstract

Trailer157

The driver attaches a trailer to their vehicle and it contains tyre pressure sensors.158

These should be available to the virtual mechanic bundle.159

Petrol station finder160

Monitor the vehicle’s fuel level. When it starts to get low, find nearby petrol161

stations and notify the driver if they are near one. Note that this requires162

programs to be notified of fuel level changes while not in the foreground.163

Sightseeing application bundle164

An application bundle could highlight sights of interest out of the windows by165

combining the current location (from GPS) with a direction from a compass166

sensor. Using a compass rather than the GPS’ velocity angle allows the bundle167

to work even when the vehicle is stationary.168

Privacy concern: Any application bundle which has access to compass data169

can potentially use dead reckoning to track the vehicle’s location, even without170

access to GPS data.171

Basic model vehicle172

If a vehicle does not have a compass sensor, the sightseeing bundle cannot173

function at all, and the Apertis store should not allow the user to install it on174

their vehicle.175

Changing bundle functionality when driving at speed176

An application bundle may want to voluntarily change or disable some of its177

features when the vehicle is being driven (as opposed to parked), or when it178

is being driven fast (above a cut-off speed). It might want to do this to avoid179

distracting the driver, or because the features do not make sense when the180

vehicle is moving. This requires bundles to be able to access speedometer and181

driving mode information.182

If the application bundle is using a cut-off speed for this decision, it should not183

have to continually monitor the vehicle’s speed to determine whether the cut-off184

has been reached.185

Changing audio volume with vehicle or cabin noise186

Bundles may want to adjust their audio output volume, or disable audio output187

entirely, in response to changes in the vehicle’s cabin or engine noise levels. For188

example, a game bundle could reduce its effects volume if a loud conversation189

can be heard in the cabin; but it might want to increase its effects volume if190

engine noise increases.191

6

Privacy concern: This should be implemented by granting access to overall192

‘volume level’ information for different zones in the vehicle; but not by grant-193

ing access to the actual audio input data, which would allow the bundle to194

record conversations. The overall volume level information should be sufficiently195

smoothed or high-latency that a malicious application cannot infer audio infor-196

mation from it.197

Night mode198

Programs may wish to change their colour scheme according to the ambient199

lighting level in a particular zone in the cabin, for example by switching to a200

‘night mode’ with a dark colour scheme if driving at night, but not if an interior201

light is on. This requires bundles to be able to read external light sensors and202

the state of internal lights.203

Weather feedback or traffic jam feedback204

A weather bundle may want to crowd-source information about local weather205

conditions to corroborate its weather reports. Information from external rain,206

temperature and atmospheric pressure sensors could be collected at regular207

intervals – even while the weather bundle is not active – and submitted to208

an online weather service as network connectivity permits.209

Similarly, a traffic jam or navigation bundle may want to crowd-source informa-210

tion about traffic jams, taking input from the speedometer and vehicle separa-211

tion distance sensors to report to an online service about the average speed and212

vehicle separation in a traffic jam.213

Insurance bundle214

A vehicle insurance company may want to offer lower insurance premiums to215

drivers who install its bundle, if the bundle can record information about their216

driving safety and submit it to the insurance company to give them more infor-217

mation about the driver’s riskiness. This would need information such as driving218

duration, distances driven, weather conditions, acceleration, braking frequency,219

frequency of using indicator lights, pitch, yaw and roll when cornering, and220

potentially vehicle maintenance information. It would also require access to221

unique identifiers for the vehicle, such as its VIN. The data would need to be222

collected regardless of whether the vehicle is connected to the internet at the223

time — so it may need to be stored for upload later.224

Privacy concern: Unique identification information like a VIN should not be225

given to untrusted bundles, as they may use it to track the user or vehicle.226

Driving setup bundle227

An application bundle may want to control the driving setup — the position of228

the steering wheel, its rake, the position of the wing mirrors, the seat position229

7

and shape, whether the vehicle is in sport mode, etc. If a guest driver starts using230

the vehicle, they could import their settings from the same bundle on their own231

vehicle, and the bundle would automatically adjust the physical driving setup232

in the vehicle to match the user’s preferences. The bundle may want to restrict233

these changes to only happen while the vehicle is parked.234

Odour detection235

A vehicle manufacturer may have invented a new type of interior sensor which236

can detect foul odours in the cabin. They want to integrate this into an ap-237

plication bundle which will change the air conditioning settings temporarily to238

clear the odour when detected. The Sensors and Actuators API currently has239

no support for this new sensor. The manufacturer does not expect their bundle240

to be used in other vehicles.241

Air conditioning control242

An application bundle which connects to wrist watch body monitors on each243

of the passengers (through an out-of-band channel like Bluetooth, which is out244

of the scope of this document; see Bluetooth wrist watch and the Internet of245

Things may want to change the cabin temperature in response to thermometer246

readings from passengers’ watches.247

Automatic window feedback248

In order to do this, the bundle may also need to close the automatic windows,249

but one of the passengers has their arm hanging out of the window and the250

hardware interlock prevents it closing. The bundle must handle being unable251

to close the window.252

Agricultural vehicle253

Apertis is used by an agricultural manufacturer to provide an IVI system for254

drivers to use in their latest tractor model. The manufacturer provides a pre-255

installed app for controlling their own brand of agricultural accessories for the256

tractor, so the driver can use it to (for example) control a tipping trailer and257

a baler which are hitched to each other behind the tractor, and also control a258

bale spear attached to the front of the tractor.259

Roof box260

A car driver adds a roof box to their car, provided by a third party, containing261

a safety sensor which detects when the box is open. The built-in application262

bundle for alerting the driver to doors which are open when the vehicle starts263

moving should be able to detect and use this sensor to additionally alert the264

driver if the roof box is open when they start moving.265

8

Truck installations266

Trucks are sold as a basis ‘vanilla’ truck with a special installation on top,267

which is customised for the truck’s intended use. For example, a rubbish truck,268

tipping truck or police truck. The installation is provided by a third party269

who has a relationship with the basis truck manufacturer. Each installation270

has specific sensors and actuators, which are to be controlled by an application271

bundle provided by the third party or by the manufacturer.272

Compromised application bundle273

An application bundle on the system, A, is installed with permissions to adjust274

the driver’s seat position, which is one of the features of the bundle. Another275

application bundle, B, is installed without such permissions (as they are not276

needed for its normal functionality).277

Safety critical: An attacker manages to exploit bundle B and execute arbitrary278

code with its privileges. The attacker must not be able to escalate this exploit279

to give B permission to use actuators attached to the system, or extra sensors.280

Similarly, they must not be able to escalate the exploit to gain the privileges of281

bundle A, and hence bundle A’s permissions to adjust the driver’s seat position.282

Ethernet intra-vehicle network283

A vehicle manufacturer wants to support high-bandwidth devices on their intra-284

vehicle network, and decides to use Ethernet for all intra-vehicle communica-285

tions, instead of a more traditional CAN or LIN network. Their use of a differ-286

ent network technology should not affect enumeration or functionality of devices287

as seen by the user.288

Development against the SDK289

An application developer wants to use a local gyroscope sensor attached to their290

development machine to feed input to their application while they are developing291

and testing it using the SDK.292

Non-use-cases293

Bluetooth wrist watch and the Internet of Things294

A passenger gets into the vehicle with a Bluetooth wrist watch which monitors295

their heart rate and various other biological variables. They launch their health296

monitor bundle on the IVI display, and it connects to their watch to download297

their recent activity data.298

This is not a use case for the Sensors and Actuators API; it should be handled299

by direct Bluetooth communication between the health monitor bundle and the300

watch. If the Sensors and Actuators API were to support third-party devices301

9

(as opposed to ones specified and installed by the vehicle manufacturer or sup-302

pliers), having full support for all available devices would become a lot harder.303

Additionally, devices would then appear and disappear while the vehicle was304

running (for example, if the user turned off their watch’s Bluetooth connection305

while driving); this is not possible with fixed in- vehicle sensors, and would306

complicate the sensor enumeration API.307

More generally, this use-case is a specific case of the internet of things (IoT),308

which is out of scope for this design for the reasons given above. Additionally,309

supporting IoT devices would mean supporting wireless communications as part310

of the sensors service, which would significantly increase its attack surface due311

to the complexity of wireless communications, and the fact they enable remote312

attacks.313

Car-to-car and car-to-infrastructure communications314

In C2C and C2X communications, vehicles share data with each other as they315

move into range of each other or static roadside infrastructure. This information316

may be anything from braking and acceleration information shared between317

convoys of vehicles to improve fuel efficiency, to payment details shared from a318

car to toll booth infrastructure.319

While many of the use cases of C2C and C2X cover sharing of sensor data, the320

data being shared is typically a limited subset of what’s available on one vehi-321

cle’s network. Due to the dynamic nature of C2C and C2X networks, and the322

greater attack surface caused by the use of more complex technologies (radio323

communications rather than wired buses), a conservative approach to security324

suggests implementing C2C and C2X on a use-case-by-use-case basis, using sep-325

arate system components to those handling intra-vehicle sensors and actuators.326

This ensures that control over actuators, which is safety critical, remains in a327

separate security domain from C2C and C2X, which must not have access to328

actuators on the local vehicle. See Security.329

An initial suggestion for C2C and C2X communications would be to implement330

them as a separate service which consumes sensor data from the sensors and331

actuators service just like other applications.332

Buddied and vehicle fleet communications333

Similarly, long-range communications of sensor data between buddied vehicles334

or vehicles operating in a fleet (for example, a haulage or taxi fleet) should335

be handled separately from the sensors and actuators service, as such systems336

involve network communications. Typical use cases here would be reporting337

speed and fuel usage information from trucks or taxis back to headquarters; or338

letting two friends know each others’ locations and traffic conditions when both339

doing the same journey.340

10

Requirements341

Enumeration of devices342

An application bundle must be able to enumerate devices in the vehicle, includ-343

ing information about where they are located in the vehicle (for example, so344

that it can adjust the position and setup of the driver’s seat but not others (see345

Driving setup bundle)).346

It is expected that the set of devices in a vehicle may change dynamically while347

the vehicle is running, for example if a roof box were added while the engine348

was running (Roof box).349

Enumeration is particularly important for bundles, as the set of sensors in a350

particular vehicle will not change, but the set of sensors seen by a bundle across351

all the vehicles it’s installed in will vary significantly.352

Enumeration of vehicles353

An application bundle must be able to enumerate vehicles connected to the354

inter-vehicle network, for example to discover the existence of hitched trailers355

or agricultural vehicles (Trailer, Agricultural vehicle).356

It is expected that the set of vehicles may change dynamically while the vehicles357

are running.358

Retrieving data from sensors359

An application bundle must be able to retrieve data from sensors. This data360

must be strongly typed in order to minimise the possibility of a bundle mis-361

interpreting it, or sensors from different manufacturers using different units,362

for example. Sensor data could vary in type from booleans (see Night mode)363

through to streaming video data (see Augmented reality parking). Sensor data364

may be processed by the system to make it more useful for application bundles;365

they do not need direct access to raw sensor data.366

Sending data to actuators367

An application bundle must be able to send data to actuators (including invok-368

ing methods on them). This data must be strongly typed in order to minimise369

the possibility of a bundle misinterpreting it, or actuators from different man-370

ufacturers using different units, for example. Actuator data could vary in type371

from booleans through to enumerated types (see Driving setup bundle) and372

possibly larger data streams, though no concrete use cases exist for that.373

Network independence374

The API should be independent of the network used to connect to devices —375

whether it be Ethernet, LIN or CAN; or whether the device is connected directly376

11

to a host processor (Ethernet intra-vehicle network).377

Bounded latency of processing sensor data378

Certain sensor data has bounds on its latency. For example, pitch, yaw and379

roll information typically arrive as angular rate from sensors, and have to be380

integrated over time to be useful to application bundles — if sensor readings381

are missed, accuracy decreases. Sensor readings should be processed within the382

latency limits specified by the sensors. The limits on forwarding this processed383

data to bundles are less strict, though it is expected to be within the latency384

noticeable by humans (around 20ms) so that it can be displayed in real time385

(see Augmented reality parking, Sightseeing application bundle, Changing audio386

volume with vehicle or cabin noise).387

Extensibility for OEMs388

New types of device may be developed after the Sensors and Actuators API is389

released. As the set of sensors in a vehicle does not vary after release, already-390

deployed versions of the API do not need to handle unknown devices. However,391

there must be a mechanism for OEMs or third parties working with them to392

define new device types when developing a new vehicle or an installation or393

accessory to go with it. In order for new devices to be usable by non-OEM394

application bundle authors, the Sensors and Actuators API must be updatable395

or extensible to support them. (Odour detection, Truck installations.)396

Third-party backends397

If an OEM or third party produces a new device which can be connected to398

an existing vehicle, some code needs to exist to allow communication between399

the device and the Apertis sensors and actuators service. This code must be400

written by the device manufacturer, as they know the hardware, and must be401

installable on the Apertis system before or after vehicle production (so as a402

system or non-system application). (See Agricultural vehicle, Roof box, Truck403

installations.)404

Third-party backend validation405

If a third-party device is exposed to the sensors and actuators service, the third406

party might not be one who has contributed to or used Apertis before. There407

must be a process for validating backends for the sensors and actuators system,408

to ensure they have a certain level of code quality and security, in order to409

reduce the attack surface of the service as a whole. (See Roof box.)410

Notifications of changes to sensor data411

All sensor data changes over time, so the API must support notifying application412

bundles of changes to sensor data they are interested in, without requiring the413

12

bundle to poll for updates (see Petrol station finder, Sightseeing application414

bundle, Changing bundle functionality when driving at speed, Changing audio415

volume with vehicle or cabin noise, Night mode, Odour detection).416

Application bundles should be able to request notifications only when a sensor417

value crosses a given threshold, to avoid unnecessary notifications (see Changing418

bundle functionality when driving at speed).419

Uncertainty bounds420

Sensors are not perfectly accurate, and additionally a sensor’s accuracy may421

vary over time; each sensor measurement should be provided with uncertainty422

bounds. For example, the accuracy of geolocation by mobile phone tower varies423

with your location.424

This is especially possible with data aggregated from multiple sensors, where425

the aggregate accuracy can be statistically modelled (for example, distance cal-426

culation from multiple sensors in Weather feedback or traffic jam feedback).427

Failure feedback428

As actuators are physical devices, they can fail. The API cannot assume au-429

tomatic, immediate or successful application of its changes to properties, and430

needs to allow for feedback on all property changes.431

For example, the air conditioning coolant on an older vehicle might have leaked,432

leaving the air conditioning system unable to cool the cabin effectively. Appli-433

cation bundles which wish to set the temperature need to have feedback from a434

thermometer to work out whether the temperature has reached the target value435

(see Air conditioning control).436

Another example is failure to close windows: Automatic window feedback.437

Timestamping438

In-vehicle networks (especially Ethernet) may have variable latency. In order439

to correlate measurements from multiple sensors on the end of connections of440

varying latency, each measurement should have an associated timestamp, added441

at the time the measurement was recorded (see Augmented reality parking,442

Sightseeing application bundle).443

Triggering bundle activation444

Various use cases require a bundle to be able to trigger actions based on sensor445

data reaching a certain value, even if the program is not running at that time446

(see Petrol station finder, Changing audio volume with vehicle or cabin noise,447

Odour detection). This requires some operating system service to monitor a448

list of trigger conditions even while the programs which set those triggers are449

13

not running, and start the appropriate program so that it can respond to that450

trigger.451

Bulk recording of sensor data452

Some bundles require to be able to regularly record sensor measurements, with453

the intention of processing them (for example, uploading them to an online454

service) at a later time (see Weather feedback or traffic jam feedback, Insurance455

bundle). This is not latency sensitive. As an optimisation, a system service456

could record the sensor readings for them, to avoid waking up the programs457

regularly.458

Data recorded in this way must only be accessible to the application bundle459

which requested it be recorded.460

The requesting application bundle is responsible for processing the data period-461

ically, and deleting it once processed. The system must be able to periodically462

overwrite recorded data if running low on space.463

Sensor security464

As highlighted by the privacy concerns in several of the use cases (Sightseeing465

application bundle, Changing audio volume with vehicle or cabin noise, Insur-466

ance bundle), there are security concerns with allowing bundles access to sensor467

data. The system must be able to restrict access to some or all types of sensor468

data unless the user has explicitly granted a bundle access to it. Bundles with469

access to sensor data must be in separate security domains to prevent privilege470

escalation (Compromised application bundle).471

Actuator security472

Control of actuators is safety critical but not privacy sensitive (unlike sensors).473

The system must be able to restrict write access to some or all types of actuator474

unless the user has explicitly granted a bundle access to it. Bundles with access475

to actuators must be in separate security domains to prevent privilege escalation476

(Compromised application bundle).477

App store knowledge of device requirements478

The Apertis store must know which devices (sensors and actuators) an appli-479

cation bundle requires to function, and should not allow the user to install a480

bundle which requires a device their vehicle does not have, or the bundle would481

be useless (Basic model vehicle).482

Accessing devices on multiple vehicles483

The API must support accessing properties for multiple vehicles, such as hitched484

agricultural trailers (Agricultural vehicle) or car trailers (Trailer). These vehi-485

14

cles may appear dynamically while the IVI system is running; for example, in486

the case where the driver hitches a trailer with the engine running.487

Note: This requirement explicitly does not support C2C or C2X, which are out488

of scope of this document. (See Car-to-car and car-to-infrastructure communi-489

cations).490

Third-party accessories491

The API must support accessing properties of third-party accessories — either492

dynamically attached to the vehicle (Roof box) or installed during manufacture493

(Truck installations).494

SDK hardware support495

The SDK must contain a backend for the system which allows appropriate496

hardware which is attached to the developer’s machine to be used as sensors or497

actuators for development and testing of applications (see Development against498

the SDK).499

This backend must not be available in target images.500

Background on intra-vehicle networks501

For the purposes of informing the interface design between the Sensors and502

Actuators API and the underlying intra-vehicle network, some background in-503

formation is needed on typical characteristics of intra-vehicle networks.504

CAN and LIN are common protocols in use, though future development may505

favour Ethernet or other protocols. In all cases, the OEM statically defines all506

protocols, data structures, and devices which can be on the network. Bandwidth507

is allocated for all devices at the time of manufacture; even for devices which508

are only optionally connected to the network, either because they’re a premium509

vehicle feature, or because they are detachable, such as trailers. In these cases,510

data structures on the network relating to those devices are empty when the511

devices are not connected.512

Sometimes flags are used in the protocol, such as ‘is a trailer connected?’.513

There are no common libraries for accessing vehicle networks: they differ be-514

tween OEMs.515

Existing sensor systems516

This chapter describes the approaches taken by various existing systems for517

exposing sensor information to application bundles, because it might be useful518

input for Apertis’ decision making. Where available, it also provides some519

details of the implementations of features that seem particularly interesting520

or relevant.521

15

W3C Vehicle Information Service Specification (VISS)522

The W3C Vehicle Information Service Specification1 defines a WebSocket based523

API for a Vehicle Information Service (VIS) to enable client applications to524

get, set, subscribe and unsubscribe to vehicle signals and data attributes. This525

specification defines a number of methods for accessing vehicle data which are526

strictly agnostic to the data model Vehicle Signal Specification2.527

The Vehicle Signal Specification (VSS) focuses on vehicle signals, in the sense528

of classical sensors and actuators with the raw data communicated over vehicle529

buses and data which is more commonly associated with the infotainment system530

alike. This defines a ‘tree-like’ logical taxonomy of the vehicle, (formally a531

Directed Acyclic Graph), where major vehicle structures (e.g. body, engine)532

are near the top of the tree and the logical assemblies and components that533

comprise them, are defined as their child nodes.534

The VSS supports both extensibility and the ability to define private branches.535

GENIVI Web API Vehicle536

The GENIVI Web API Vehicle3 (sic) is a proof of concept API for exposing and537

manipulating vehicle information to GENIVI apps via a JavaScript API. It is538

very similar to the W3C Vehicle Information Access API, and seems to expose539

a very similar set of properties.540

The Web API Vehicle4 is a proxy for exposing a separate Vehicle Interface API541

within a HTML5 engine. The Vehicle Interface API itself is apparently a D-Bus542

API for sharing vehicle information between the CAN bus and various clients,543

including this Web API Vehicle and any native apps. Unfortunately, the Vehicle544

Interface API seems to be unspecified as of August 2015, at least in publicly545

released GENIVI documents.546

The Web API Vehicle has the same features and scope as the W3C API, but its547

implementation is clumsier, relying a lot more on seemingly unstructured magic548

strings for accessing vehicle properties.549

It was last publicly modified in May 2013, and might not be under development550

any more. Furthermore, a lot of the wiki links in the specification link to private551

and inaccessible data on collab.genivi.org.552

Apple HomeKit553

Apple HomeKit5 is an API to allow apps on Apple devices to interact with554

sensors and actuators in a home environment, such as garage doors, thermostats,555

1https://www.w3.org/TR/vehicle-information-service/
2https://github.com/GENIVI/vehicle_signal_specification
3https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
4https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
5https://developer.apple.com/homekit/

16

https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
https://developer.apple.com/homekit/
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
https://at.projects.genivi.org/wiki/display/PROJ/Web+API+Vehicle
https://developer.apple.com/homekit/

thermometers and light switches, amongst others. It is designed explicitly for the556

home environment, and does not consider vehicles. However, as it is effectively557

an API for allowing interactions between sandboxed apps and external sensors558

and actuators, it bears relevance to the design of such an API for vehicles.559

At its core, HomeKit allows enumeration of devices (‘accessories’) in a home.560

A large part of its API is dedicated to grouping these into homes, rooms, ser-561

vice groups and zones so that collections of accessories can be interacted with562

simultaneously.563

Each accessory implements one or more ‘services’ which are defined interfaces564

for specific functionality, such as a light switch interface, or a thermostat inter-565

face. Each service can expose one or more ‘characteristics’ which are readable566

or writeable properties of that interface, such as whether a light is on, the cur-567

rent temperature measured by a thermostat, or the target temperature for the568

thermostat.569

It explicitly maintains separation between current and target states for certain570

characteristics, such as temperature controlled by a thermostat, acknowledging571

that changes to physical systems take time.572

A second part of the API implements ‘actions’ based on sensor values, which are573

arbitrary pieces of code executed when a certain condition is met. Typically,574

this would be to set the value of a characteristic on some actuator when the575

input from another sensor meets a given condition. For example, switching on a576

group of lights when the garage door state changes to ‘open’ as someone arrives577

in the garage.578

Critically, triggers and actions are handled by the iOS operating system, so are579

still checked and executed when the app which created them is not active.580

HomeKit has a simulator6 for developing apps against.581

Apple External Accessory API582

As a precursor to HomeKit, Apple also supports an External Accessory API7,583

which allows any iOS device to interact with accessories attached to the device584

(for example, through Bluetooth).585

In order to use the External Accessory API, an app must list the accessory586

protocols it supports in its app manifest. Each accessory supports one or more587

protocols, defined by the manufacturer, which are interfaces for aspects of the588

device’s functionality. They are equivalent to the ‘services’ in the HomeKit API.589

The code to implement these protocols is provided by the manufacturer, and590

the protocols may be proprietary or standard.591

6https://developer.apple.com/library/ios/documentation/NetworkingInternet/
Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.
html#//apple_ref/doc/uid/TP40015050-CH7-SW1

7https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/
Introduction/Introduction.html

17

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/HomeKitDeveloperGuide/TestingYourHomeKitApp/TestingYourHomeKitApp.html#//apple_ref/doc/uid/TP40015050-CH7-SW1
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Introduction/Introduction.html

Each accessory exposes versioning information8 which can be used to determine592

the protocol to use.593

All communication with accessories is done via sessions9, rather than one-shot594

reads or writes of properties. Each session is a bi-directional stream along which595

the accessory’s protocol is transmitted.596

iOS CarPlay597

iOS CarPlay10 is a system for connecting an iOS device to a car’s IVI system,598

displaying apps from the phone on the car’s display and allowing those apps to599

be controlled by the car’s touchscreen or physical controls. It does not give11600

the iOS device access to car sensor data, and hence is not especially relevant to601

this design.602

It does not12 (as of August 2015) have an API for integrating apps with the IVI603

display.604

Most vehicle manufacturers have pledged support for it in the coming years.605

Android Auto606

Android Auto13 is very similar to iOS CarPlay: a system for connecting a phone607

to the vehicle’s IVI system so it can use the display and touchscreen or physical608

controls. As with CarPlay, it does not give the Android device access to vehicle609

sensor data, although (as of August 2015) that is planned for the future.610

As of August 2015, it has an API for apps14, allowing audio and messaging apps611

to improve their integration with the IVI display.612

Most vehicle manufacturers have pledged support for it in the coming years.613

MirrorLink614

MirrorLink15 is a proprietary system for integrating phones with the IVI display615

— it is similar to iOS CarPlay and Android Auto, but produced by the Car616

Connectivity Consortium16 rather than a device manufacturer like Apple or617

Google.618

8https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/
EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber

9https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/
EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory

10http://www.apple.com/uk/ios/carplay/
11http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
12https://developer.apple.com/carplay/
13https://www.android.com/auto/
14https://developer.android.com/training/auto/index.html
15http://www.mirrorlink.com/apps
16http://carconnectivity.org/

18

https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
http://www.apple.com/uk/ios/carplay/
http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
https://developer.apple.com/carplay/
https://www.android.com/auto/
https://developer.android.com/training/auto/index.html
http://www.mirrorlink.com/apps
http://carconnectivity.org/
http://carconnectivity.org/
http://carconnectivity.org/
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EAAccessory_class/index.html#//apple_ref/occ/instp/EAAccessory/modelNumber
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
https://developer.apple.com/library/ios/documentation/ExternalAccessory/Reference/EASession_class/index.html#//apple_ref/occ/instp/EASession/accessory
http://www.apple.com/uk/ios/carplay/
http://www.tomsguide.com/us/apple-carplay-faq,news-18450.html
https://developer.apple.com/carplay/
https://www.android.com/auto/
https://developer.android.com/training/auto/index.html
http://www.mirrorlink.com/apps
http://carconnectivity.org/

The specifications for MirrorLink are proprietary and only available to registered619

developers. In a brochure (now unavailable for download), it is stated that620

support for allowing apps access to sensor data is planned for the future (as of621

2014).622

MirrorLink is apparently the technology behind Microsoft’s Windows in the623

Car17 system, which was announced in April 2014.624

Android Sensor API625

Android’s Sensor API18 is a mature system for accessing mobile phone sensors.626

There are a more constrained set of sensors available in phones than in vehi-627

cles, hence the API exposes individual sensors, each implementing an interface628

specific to its type of sensor (for example, accelerometer, orientation sensor or629

pressure sensor). The API places a lot of emphasis on the physical limitations of630

each sensor, such as its range, resolution, and uncertainty of its measurements.631

The sensors required by an app are listed in its manifest file, which allows the632

Google Play store to filter apps by whether the user’s phone has all the necessary633

sensors.634

As Android runs on a multitude of devices from different manufacturers, each635

with different sensors, enumeration of the available sensors is also an emphasis636

of the API, using its SensorManager19 class.637

Sensors20 can be queried by apps, or apps can register for notifications when638

sensor values change, including when the app is not in the foreground or when639

the device is asleep (if supported by the sensor). Apps can also register21 for no-640

tifications when sensor values satisfy some trigger, such as a ‘significant’ change.641

Automotive Message Broker642

Automotive Message Broker22 is an Intel OTC project to broker information643

from the vehicle networks to applications, exposing a tweaked version23 of the644

W3C Vehicle Information Access API (with a few types and naming conventions645

tweaked) over D-Bus to apps, and interfacing with whatever underlying networks646

are in use in the vehicle. In short, it has the same goals as the Apertis Sensors647

and Actuators API.648

17http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-
with-windows-in-the-car-concept-1240245

18http://developer.android.com/guide/topics/sensors/index.html
19http://developer.android.com/reference/android/hardware/SensorManager.html
20http://developer.android.com/reference/android/hardware/SensorManager.html#

registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,
%20int%29

21http://developer.android.com/reference/android/hardware/SensorManager.html#
requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.
Sensor%29

22https://github.com/otcshare/automotive-message-broker
23https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl

19

http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://developer.android.com/guide/topics/sensors/index.html
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
https://github.com/otcshare/automotive-message-broker
https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://www.techradar.com/news/car-tech/microsoft-sets-its-sights-on-apple-carplay-with-windows-in-the-car-concept-1240245
http://developer.android.com/guide/topics/sensors/index.html
http://developer.android.com/reference/android/hardware/SensorManager.html
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#registerListener%28android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
http://developer.android.com/reference/android/hardware/SensorManager.html#requestTriggerSensor%28android.hardware.TriggerEventListener,%20android.hardware.Sensor%29
https://github.com/otcshare/automotive-message-broker
https://github.com/otcshare/automotive-message-broker/blob/master/docs/amb.in.fidl

As of August 2015, it was last modified in June 2015, so is an active project649

(although Tizen is in decline, so this may change). Although it is written in650

C++, it uses GNOME technologies like GObject Introspection; but it also uses651

Qt. Its main daemon is the Automotive Message Broker daemon, ambd.652

One area where it differs from the Apertis design is Security; it does not im-653

plement the polkit integration which is key to the vehicle device daemon secu-654

rity domain boundary. Modifying the security architecture of a large software655

project after its initial implementation is typically hard to get right.656

Another area where ambd differs from the Apertis design is in the backend:657

ambd uses multiple plugins to aggregate vehicle properties from many places.658

Apertis plans to use a single OEM-provided, vehicle-specific plugin.659

AllJoyn660

The AllJoyn Framework24 is an internet of things (IoT) framework produced661

under the Linux Foundation banner and the Open Connectivity Foundation25.662

(Note that IoT frameworks are explicitly out of scope for this design; this section663

is for background information only. See Bluetooth wrist watch and the Internet664

of Things) It allows devices to discover and communicate with each other. It is665

freely available (open source) and has components which run on various different666

operating systems.667

As a framework, it abstracts the differences between physical transports, provid-668

ing a session API for devices to use in one-to-one or one-to-many configurations669

for communication. A lot of its code is orientated towards implementing differ-670

ent physical transports.671

It provides a security API for establishing different trust models between devices.672

It provides various communication layer APIs for implementing RPC or raw673

I/O streams (or other things in-between) between devices. However, it does not674

specify the protocols which devices must use — they are specified by the device675

manufacturer.676

AllJoyn provides common services for setting up new devices, sending notifica-677

tions between devices, and controlling devices. It provides one example service678

for controlling lamps in a house, where each lamp manufacturer implements679

a well-defined OEM API for their lamp, and each application uses the lamp680

service API which abstracts over these.681

Approach682

Based on the above research (Existing sensor systems) and Requirements, we683

recommend the following approach as an initial sketch of a Sensors and Actua-684

tors API.685

24https://openconnectivity.org/technology/reference-implementation/alljoyn/
25https://openconnectivity.org/

20

https://openconnectivity.org/technology/reference-implementation/alljoyn/
https://openconnectivity.org/
https://openconnectivity.org/technology/reference-implementation/alljoyn/
https://openconnectivity.org/

Overall architecture686

687

Vehicle device daemon688

Implement a vehicle device daemon which aggregates all sensor data in the vehi-689

cle, and multiplexes access to all actuators in the vehicle (apart from specialised690

high bandwidth devices; see High bandwidth or low latency sensors). It will691

connect to whichever underlying buses are used by the OEM to connect devices692

(for example, the CAN and LIN buses); see Hardware and app APIs. The im-693

plementation may be new, or may be a modified version of ambd, although it694

would need large amounts of rework to fit the Apertis design (see Automotive695

message broker).696

The daemon needs to receive and process input within the latency bounds of697

the sensors.698

The daemon should expose a D-Bus interface which follows the W3C Vehicle699

Information Access API26. The set of supported properties, out of those defined700

by the Vehicle Signal Specification27, may vary between vehicles — this is as ex-701

pected by the specification. It may vary over time as devices dynamically appear702

and disappear, which programs can monitor using the Availability interface28.703

The W3C specification was chosen rather than something like HomeKit due to704

its close match with the requirements, its automotive background, and the fact705

that it looks like an active and supported specification. Furthermore, HomeKit706

requires each device to define one or more protocols to use, allowing for arbitrary707

flexibility in how devices communicate with the controller. All the sensor and708

actuator use cases which are relevant to vehicles need only a property interface,709

however, which supports getting and setting properties, and being notified when710

they change.711

26http://www.w3.org/2014/automotive/vehicle_spec.html
27https://github.com/GENIVI/vehicle_signal_specification
28http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability

21

http://www.w3.org/2014/automotive/vehicle_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html
http://www.w3.org/2014/automotive/vehicle_spec.html
https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
http://www.w3.org/2014/automotive/vehicle_spec.html
https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability

If an OEM, third party or application developer wishes to add new sensor or712

actuator types, they should follow the extension process29 and request that the713

extensions be standardised by Apertis — they will then be released in the next714

version of the Sensors and Actuators API, available for all applications to use. If715

a vehicle needs to be released with those sensors or actuators in the meantime,716

their properties must be added to the SDK API in an OEM-specific namespace.717

Applications from the OEM can use properties from this namespace until they718

are standardised in Apertis. See Property naming.719

Multiple vehicles can be supported by exposing new top-level instances of the720

Vehicle interface30. For example, each vehicle could be exposed as a new object721

in D-Bus, each implementing the Vehicle interface, with changes to the set of722

vehicles notified using an interface like the standard D-Bus ObjectManager31723

interface.724

This API can be exposed to application bundles in any binding language sup-725

ported by GObject Introspection (including JavaScript), through the use of a726

client library, just as with other Apertis services. The client library may pro-727

vide more specific interfaces than the D-Bus interface — the D-Bus API may728

be defined in terms of string keywords and variant values, whereas the client729

library API may be sensor-specific strongly typed interfaces.730

Hardware and app APIs731

The vehicle device daemon will have two APIs: the D-Bus SDK API exposed732

to applications, and the hardware API it consumes to provide access to the733

CAN and LIN buses (for example). The SDK API is specified by Apertis,734

and is standardised across all Apertis deployments in vehicles, so that a bundle735

written against it will work in all vehicles (subject to the availability of the736

devices whose properties it uses).737

Open question: The exact definition of the SDK API is yet to be finalised. It738

should include support for accessing multiple properties in a single IPC round739

trip, to reduce IPC overheads.740

The hardware API is also specified by Apertis, and implemented by one or more741

backend services which connect to the vehicle buses and devices and expose the742

information as properties understandable by the vehicle device daemon, using743

the hardware API.744

At least one backend service must be provided by the vehicle OEM, and it must745

expose properties from the vehicle’s standard devices from the vehicle buses.746

Other backend services may be provided by the vehicle OEM for other devices,747

such as optional devices for premium vehicle models; or truck installations.748

29https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
30https://www.w3.org/Submission/vsso/#Vehicle
31http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-

objectmanager

22

https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://www.w3.org/Submission/vsso/#Vehicle
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://www.w3.org/Submission/vsso/#Vehicle
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager

Similarly, backend services may be provided by third parties for other devices,749

such as after-market devices like roof boxes. Application bundles may provide750

backend services as well, to expose hardware via application-specific protocols.751

Consequently, backend services will likely be developed in isolation from each752

other.753

Each backend service must expose zero or more properties — it is possible for754

a backend to expose zero properties if the device it targets is not currently755

connected, for example.756

Each backend service must run as a separate process, communicating with the757

vehicle device daemon over D-Bus using the hardware API. The hardware API758

needs the following functionality:759

• Bulk enumeration of vehicles760

• Bulk notification of changes to vehicle availability761

• Bulk enumeration of properties of a vehicle, including readability and762

writability763

• Bulk notification of changes to property availability, readability or764

writability765

• Subscription to and unsubscription from property change notifications766

• Bulk property change notifications for subscribed properties767

The hardware API will be roughly a similar shape to the SDK API, and hence768

a lot of complexity of the vehicle device daemon will be in the vehicle-specific769

backends (both operate on properties — Properties vs devices).770

As vehicle networks differ, the backend used in a given vehicle has to be de-771

veloped by the OEM developing that vehicle. Apertis may be able to provide772

some common utility functions to help in implementing backends, but cannot773

abstract all the differences between vehicles. (See Background on intra-vehicle774

networks).775

It is expected that the main backend service for a vehicle, provided by that vehi-776

cle’s OEM, will be access the vehicle-specific network implementation running777

in the automotive domain, and hence will use the inter-domain communications778

connection32. In order to avoid additional unnecessary inter-process communi-779

cation (IPC) hops, it is suggested that the main backend service acts as the780

proxy for sensor data on the inter-domain connection, rather than communicat-781

ing with a separate proxy in the CE domain — but only if this is possible within782

the security requirements on inter-domain connection proxies.783

The path for a property to pass from a hardware sensor through to an application784

is long: from the hardware sensor, to the backend service, through the D-Bus785

daemon to the vehicle device daemon, then through the D-Bus daemon again786

32https://em.pages.apertis.org/apertis-website/concepts/inter-domain-communication/

23

https://em.pages.apertis.org/apertis-website/concepts/inter-domain-communication/
https://em.pages.apertis.org/apertis-website/concepts/inter-domain-communication/
https://em.pages.apertis.org/apertis-website/concepts/inter-domain-communication/
https://em.pages.apertis.org/apertis-website/concepts/inter-domain-communication/

to the application. This is at least 5 IPC hops, which could introduce non-787

negligible latency. See High bandwidth or low latency sensors for discussion788

about this.789

Interactions between backend services790

In order to keep the security model for the system simple, backend services must791

not be able to interact. Each device must be exposed by exactly one backend792

service — two backend services cannot expose the same device; and neither can793

they extend devices exposed by other backend services.794

The vehicle device daemon must aggregate the properties exposed by its back-795

ends and choose how to merge them. For example, if one backend service796

provides a ‘lights’ property as an array with one element, and another backend797

service does similarly, the vehicle device daemon should append the two and798

expose a ‘lights’ array with both elements in the SDK API.799

For other properties, the vehicle device daemon should combine scalar values.800

For example, if one backend service exposes a rain sensor measurement of 4/10,801

and another exposes a second measurement (from a separate sensor) of 6/10,802

the SDK API should expose an aggregated rain sensor measurement of (for803

example) 6/10 as the maximum of the two.804

Open question: The exact means for aggregating each property in the Vehicle805

Signal Specification is yet to be determined.806

Recommended hardware API design807

Below is a pseudo-code recommendation for the hardware API. It is not final,808

but indicates the current best suggestion for the API. It has two parts — a809

management API which is implemented by the vehicle device daemon; and a810

property API which is implemented by each backend service and queried by the811

vehicle device daemon.812

Types are given in the D-Bus type system notation33.813

Management API814

Exposed on the well-known name org.apertis.Rhosydd1 from the main daemon,815

the /org/apertis/Rhosydd1 object implements the standard org.freedesktop.DBus.ObjectManager34816

interface to let client discover and get notified about the registered vehicles.817

Vehicles are mapped under /org/apertis/Rhosydd1/${vehicle_id} and implement818

the org.apertis.Rhosydd1.Vehicle interface:819

interface org.apertis.Rhosydd1.Vehicle {820

33http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
34http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-

objectmanager

24

http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#type-system
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager
http://dbus.freedesktop.org/doc/dbus-specification.html#standard-interfaces-objectmanager

readonly property s VehicleId;821

method GetAttributes (822

in s node_path,823

out x current_time,824

out a(s(vdx)a{sv}(uu)) attributes)825

method GetAttributesMetadata (826

in s node_path,827

out x current_time,828

out a(sa{sv}(uu)) attributes_metadata)829

method SetAttributes (830

in a{sv} attributes_value)831

method UpdateSubscriptions (832

in a(sa{sv}) subscriptions,833

in a(sa{sv}) unsubscriptions)834

signal AttributesChanged (835

x current_time,836

a(s(vdx)a{sv}(uu)) changed_attributes,837

a(sa{sv}(uu)) invalidated_attributes))838

signal AttributesMetadataChanged (839

x current_time,840

a(sa{sv}(uu)) changed_attributes_metadata)841

}842

Backends register themselves on the bus with well-known names under the843

org.apertis.Rhosydd1.Backends. prefix and implement the same interfaces and844

the main daemon, which will monitor the owned names on the bus and register845

to the object manager signals to multiplex access to the backends.846

Each attribute managed via the vehicle attribute API is identified by a prop-847

erty name. Properties names come from the Vehicle Signal Specification, for848

example:849

• Sunroof.Position35850

• Horn.IsActive36851

• Seat.FancySeatController.BackTemperature (oem specific property)852

Each attribute has three values associated:853

• its value (of type v)854

• its accuracy (as a standard deviation of type d, set to 0.0 for non-numeric855

values)856

• the timestamp when it was last updated (of type x)857

In addition the current time is also returned for comparison to the time the858

value was last updated.859

35https://www.w3.org/Submission/vsso/#SunroofPositionSensor
36https://www.w3.org/Submission/vsso/#HornIsActive

25

https://www.w3.org/Submission/vsso/#SunroofPositionSensor
https://www.w3.org/Submission/vsso/#HornIsActive
https://www.w3.org/Submission/vsso/#SunroofPositionSensor
https://www.w3.org/Submission/vsso/#HornIsActive

Values also have two set of metadata (of type u) associated:860

• availability enum861

– AVAILABLE = 1862

– NOT_SUPPORTED = 0863

– NOT_SUPPORTED_YET = 2864

– NOT_SUPPORTED_SECURITY_POLICY = 3865

– NOT_SUPPORTED_BUSINESS_POLICY = 4866

– NOT_SUPPORTED_OTHER = 5867

• access flags868

– NONE = 0869

– READABLE = (1 « 0)870

– WRITABLE = (1 « 1)871

The GetAttributes method must return the value of all properties in the given872

branch indicated by the node path. If the node path represents a leaf node, then873

only the value corresponding to that property is returned. If no such branch or874

property exists on that vehicle, it must return an error. To get all properties of875

the vehicle an empty node path shall be passed.876

To receive notification of attribute changes via the AttributesChanged and At-877

tributesMetadataChanged signals, clients must first register their subscription878

with the UpdateSubscriptions method to specify the kind of properties for which879

they have some interest.880

A backend service must emit an AttributesChanged signal when one of the881

properties it exposes changes, but it may wait to combine that signal with those882

from other changed properties — the trade-off between latency and notification883

frequency should be determined by backend service developers.884

Hardware API compliance testing885

As the vehicle-specific and third party backend services to the vehicle device886

daemon contain a large part of the implementation of this system, there should887

be a compliance test suite which all backend services must pass before being888

deployed in a vehicle.889

If a backend service is provided by an application bundle, that application bun-890

dle must additionally undergo more stringent app store validation, potentially891

including a requirement for security review of its code. See Checks for backend892

services.893

The compliance test suite must be automated, and should include a variety of894

tests to ensure that the hardware API is used correctly by the backend service.895

It should be implemented as a mock D-Bus service which mocks up the hardware896

management API (Recommended hardware API design), and which calls the897

hardware property API. The backend service must be run against this mock898

service, and call its methods as normal. The mock service should return each899

of the possible return values for each method, including:900

26

• Success.901

• Each failure code.902

• Timeouts.903

• Values which are out of range.904

It must call property API methods with various valid and invalid input.905

The backend service must not crash or obviously misbehave (such as consuming906

an unexpected amount of CPU time or memory).907

As the backend service pushes data to the vehicle device daemon, the compliance908

test could be trivially passed by a backend service which pushes zero properties909

to it. This must not be allowed: backend services must be run under a test910

harness which triggers all of their behaviour, for all of the devices they support.911

Whether this harness simulates traffic on an underlying intra-vehicle network,912

or physically provides inputs to a hardware sensor, is implementation defined.913

The behaviour must be consistently reproducible for multiple compliance test914

runs.915

SDK API compliance testing and simulation916

Application bundle developers will not be able to test their bundles on real917

vehicles easily, so a simulator should be made available as part of the SDK, which918

exposes a developer-configurable set of properties to the bundle under test. The919

simulator must support all properties and configurations supported by the real920

vehicle device daemon, including multiple vehicles and third-party accessories;921

otherwise bundles will likely never be tested in such configurations. Similarly,922

it must support varying properties over time, simulating dynamic addition and923

removal of vehicles and devices, and simulating errors in controlling actuators924

(for example, Automatic window feedback).925

The emulator should be implemented as a special backend service for the vehicle926

device daemon, which is provided by the emulator application. That way, it can927

directly feed simulated device properties into the daemon. This backend, and928

the emulator should only be available on the SDK, and must never be available929

on production systems.930

Compliance testing of application bundles is harder, but as a general principle,931

any of the Apertis store validation checks which can be brought forward so they932

can be run by the bundle developers, should be brought forward.933

SDK hardware934

If a developer has appropriate sensors or actuators attached to their development935

machine, the development version of the sensors and actuators system should936

have a separate backend service which exposes that hardware to applications937

for development and testing, just as if it were real hardware in a vehicle.938

27

This backend service must be separate from the emulator backend service (939

SDK API compliance testing and simulation), in order to allow them to be used940

independently.941

Trip logging of sensor data942

As well as an emulator for application developers to use when testing their943

applications, it would be useful to provide pre-recorded ‘trip logs’ of sensor944

data for typical driving trips which an application should be tested against.945

These trip logs should be replayable in order to test applications.946

The design for this is covered in the ‘Trip logging of SDK sensor data’ section947

of the Debug and Logging design.948

Properties vs devices949

A major design decision was whether to expose individual sensors to bundles950

via the SDK API, or to expose properties of the vehicle, which may correspond951

to the reading from a single sensor or to the aggregate of readings from multiple952

sensors. For example, if exposing sensors, the API would expose a gyroscope953

plus several accelerometers, each returning individual one-dimensional measure-954

ments. Bundles would have to process and aggregate this data themselves — in955

the majority of cases, that would lead to duplication of code (and most likely956

to bugs in applications where they mis-process the data), but it would also957

allow more advanced bundles access to the raw data to do interesting things958

with. Conversely, if exposing properties, the vehicle device daemon would pre-959

aggregate the data so that the properties exposed to bundles are filtered and960

averaged acceleration values in three dimensions and three angular dimensions.961

This would simplify implementation within bundles, at the cost of preventing a962

small class of interesting bundles from accessing the raw data they need.963

For the sake of keeping bundles simpler, and hence with potentially fewer bugs,964

this design exposes properties rather than sensors in the SDK API. This also965

means that the potentially latency sensitive aggregation code happens in the966

daemon, rather than in bundles which receive the data over D-Bus, which has967

variable latency.968

Similarly, the hardware API must expose properties as well, rather than indi-969

vidual devices. It may aggregate data where appropriate (for example, if it has970

information which is useful to the aggregation process which it cannot pass on971

to the vehicle device daemon). This also means that a set of device semantics,972

separate from the W3C Vehicle Data property semantics, does not have to be973

defined; nor a mapping between it and the properties.974

28

Property naming975

Properties exposed in the SDK API must be named following the Vehicle Signal976

Specification (VSS) naming guidelines37. VSS defines a ‘tree-like’ logical taxon-977

omy of the vehicle, (formally a Directed Acyclic Graph), where major vehicle978

structures (e.g. body, engine) are near the top of the tree and the logical assem-979

blies and components that comprise them, are defined as their child nodes. Each980

of the child nodes in the tree is further decomposed into its logical constituents,981

and the process is repeated until leaf nodes are reached. A leaf node is a node982

at the end of a branch that cannot be decomposed because it represents a single983

signal or data attribute value. For example some of the properties of DriveTrain984

transmission and fuel system are exposed with these names:985

• Drivetrain.Transmission.Speed38986

• Drivetrain.Transmission.TravelledDistance39987

• DriveTrain.FuelSystem.TankCapacity40988

The element hops from the root to the leaf is called path. Properties are named989

according to their path from the root of the tree toward the node itself and each990

element in the path is delimited by using the dot notation.991

Property names are formed of components in the data tree (which may contain992

the letters a-z, A-Z, and the digits 0-9; they must start with a letter a-z or A-Z,993

and must be in CamelCase) separated by dots. Property names must start and994

end with a component (not a dot) and contain one or more components.995

If an OEM needs to expose a custom (non-standardised) property, they must996

define them underneath the private branch41 which is provided by VSS to facil-997

itate OEM specific properties.998

High bandwidth or low latency sensors999

Sensors which provide high bandwidth outputs, or whose outputs must reach the1000

bundle within certain latency bounds (as opposed to simply being aggregated1001

by the vehicle device daemon within certain latency bounds), will be handled1002

out of band. Instead of exposing the sensor data via the vehicle device daemon,1003

the address of some out of band communications channel will be exposed. For1004

video devices, this might be a V4L device node; for audio devices it might be a1005

PulseAudio device identifier. Multiplexing access to the device is then delegated1006

to the out of band mechanism.1007

This considerably relaxes the performance requirements on the vehicle device1008

37https://genivi.github.io/vehicle_signal_specification/rule_set/basics/#addressing-
nodes

38https://www.w3.org/Submission/vsso/#VehicleSpeed
39https://www.w3.org/Submission/vsso/#TravelledDistance
40https://www.w3.org/Submission/vsso/#tankCapacity
41https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/

29

https://genivi.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://www.w3.org/Submission/vsso/#VehicleSpeed
https://www.w3.org/Submission/vsso/#TravelledDistance
https://www.w3.org/Submission/vsso/#tankCapacity
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/
https://genivi.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://genivi.github.io/vehicle_signal_specification/rule_set/basics/#addressing-nodes
https://www.w3.org/Submission/vsso/#VehicleSpeed
https://www.w3.org/Submission/vsso/#TravelledDistance
https://www.w3.org/Submission/vsso/#tankCapacity
https://genivi.github.io/vehicle_signal_specification/rule_set/private_branch/

daemon, and allows the more specialist high bandwidth use cases to be handled1009

by more specialised code designed for the purpose.1010

Timestamps and uncertainty bounds1011

The W3C Vehicle Signal Specification does not define uncertainty fields for1012

any of its data types (for example, VehicleSpeed42 contains a single speed field1013

measured in kilometres per hour). However, it allows the extensibility, so the1014

data types exposed by the vehicle device daemon should all include an extension1015

field specifying the uncertainty (accuracy) of the measurement, in appropriate1016

units; and another specifying the timestamp when the measurement was taken,1017

in monotonic time (in the CLOCK_MONOTONIC43 sense).1018

For example, the Apertis VehicleSpeed update looks like this:1019

[('Drivetrain.Transmission.Speed', -> property name1020

(110, 0.3, 38003116), -1021

> value field (speed, uncertainty, timestamp)1022

{'description': 'Latereal vehicle accelaration', -> metadata1023

'id': 54,1024

'type': 'Int32',1025

'unit': 'km/h'})1026

]1027

which represents a measurement of speed ± uncertainty (110 ± 0.3) kilometres1028

per hour.1029

Registering triggers and actions1030

When subscribing to notifications for changes to a particular property using the1031

VehicleSignalInterface44 interface, a program is also subscribing to be woken up1032

when that property changes, even if the program is suspended or otherwise not1033

in the foreground.1034

Once woken up, the program can process the updated property value, and poten-1035

tially send a notification to the user. If the user interacts with this notification,1036

the program may be brought to the foreground. The program must not be au-1037

tomatically brought to the foreground without user interaction or it will steal1038

the user’s focus, which is distracting.1039

See the draft compositor security design1040

Alternatively, the program could process the updated property value in the1041

background without notifying the user.1042

42https://genivi.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_
actuator/

43http://linux.die.net/man/3/clock_gettime
44http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-

subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

30

https://genivi.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
http://linux.die.net/man/3/clock_gettime
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
https://genivi.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
https://genivi.github.io/vehicle_signal_specification/rule_set/data_entry/sensor_actuator/
http://linux.die.net/man/3/clock_gettime
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

The VehicleSignalInterface interface may be extended to support notifications1043

only when a property value is in a given range; a degenerate case of this, where1044

the upper and lower bounds of the range are equal, would support notifica-1045

tions for property values crossing a threshold. This would most likely be imple-1046

mented by adding optional min and max parameters to the VehicleSignalInter-1047

face.subscribe() method.1048

Bulk recording of sensor data1049

This is a slightly niche use case for the moment, and can be handled by an1050

application bundle running an agent process which is subscribed to the relevant1051

properties and records them itself. This is less efficient than having the vehicle1052

device daemon do it, as it means more processes waking up for changes in sensor1053

data, but avoids questions of data formats to use and how and when to send bulk1054

data between the vehicle device daemon and the application bundle’s agent.1055

If the implementation of this is moved into the vehicle device daemon, the1056

lifecycle of recorded data must be considered: how space is allocated for the1057

data’s storage, when and how the application bundle is woken to process the1058

data, and what happens when the allocated storage space is filled.1059

Security1060

The vehicle device daemon acts as a privilege boundary between all bundles1061

accessing devices, between the bundles and the devices, and between each back-1062

end service. Application bundles must request permissions to access sensor data1063

in their manifest (see the Applications Design document), and must separately1064

request permissions to interact with actuators. The split is because being able1065

to control devices in the vehicle is more invasive than passively reading from1066

sensors — it is safety critical. A sensible security policy may be to further split1067

out the permissions in the manifest to require specific permissions for certain1068

types of sensors, such as cabin audio sensors or parking cameras, which have1069

the potential to be used for tracking the user. As adding more permissions1070

has a very low cost, the recommendation is to err on the side of finer-grained1071

permissions.1072

The manifest should additionally separate lists of device properties which the1073

bundle requires access to from device properties which it may access if they1074

exist. This will allow the Apertis store to hide bundles which require devices1075

not supported by the user’s vehicle.1076

From the permissions in the manifest, AppArmor and polkit rules restricting1077

the program’s access to the vehicle device daemon’s API can be generated on1078

installation of the bundle. See Security domains for rationale.1079

When interacting with the vehicle device daemon, a program is securely identi-1080

fied by its D-Bus connection credentials, which can be linked back to its man-1081

ifest — the vehicle device daemon can therefore check which permissions the1082

31

program’s bundle holds and accept or reject its access request as appropriate.1083

Therefore, the vehicle device daemon acts as ‘the underlying operating system’ in1084

controlling access, in the phrasing used by45 the W3C specification. It enforces1085

the security boundary between each bundle accessing devices, and between the1086

intra- and inter-vehicle networks. The vehicle device daemon forms a separate1087

security domain from any of the applications.1088

Each backend service is a separate security domain, meaning that the vehicle1089

device daemon is in a separate security domain from the intra-vehicle networks.1090

The daemon may rate-limit API requests from each program in order to prevent1091

one program monopolising the daemon’s process time and effectively causing a1092

denial of service to other bundles by making API calls at a high rate. This1093

could result from badly implemented programs which poll sensors rather than1094

subscribing to change notifications from them, for example; as well as malicious1095

bundles.1096

Due to its complexity, low level in the operating system, and safety critical-1097

ity, the vehicle device daemon requires careful implementation and auditing1098

by an experienced developer with knowledge of secure software development at1099

the operating system level and experience with relevant technologies (polkit,1100

AppArmor, D-Bus).1101

The threat model under consideration is that of a malicious or compromised1102

bundle which can execute any of the D-Bus SDK APIs exposed by the daemon,1103

with full manifest privileges for sensor access. A second threat model is that of1104

a compromised backend service, which can execute any of the D-Bus hardware1105

APIs exposed by the daemon.1106

Security domains1107

There are various security technologies available in Apertis for use in restricting1108

access to sensors and actuators. See the Security Design for background on1109

them; especially §9, Protecting the driver assistance system from attacks. These1110

technologies can only be used on the boundaries between security domains. In1111

this design, each application bundle is a single security domain (encompassing1112

all programs in the bundle, including agents and helper programs); the vehicle1113

device daemon is another domain; and each of the backend services are in a1114

separate domain (including the vehicle networks they each use).1115

Application bundle and another application bundle or the rest of the1116

system1117

Separation of the security domains of different application bundles from each1118

other and from the rest of the system is covered in the Applications and Security1119

designs.1120

45http://www.w3.org/2014/automotive/vehicle_spec.html#security

32

http://www.w3.org/2014/automotive/vehicle_spec.html#security
http://www.w3.org/2014/automotive/vehicle_spec.html#security

Application bundle and vehicle device daemon1121

The boundary between an application bundle and the vehicle device daemon is1122

the Sensors and Actuators SDK API, implemented by the daemon and exposed1123

over D-Bus. The bundle’s AppArmor profile will grant access to call any method1124

on this interface if and only if the bundle requests access to one or more devices1125

in its manifest. Note that AppArmor is not used to separate access to different1126

sensors or actuators — it is not fine-grained enough, and is limited to allowing1127

or denying access to the API as a whole.1128

A separate set of polkit46 rules for the bundle control which devices the bundle is1129

allowed to access; these rules are generated from the bundle’s manifest, looking1130

at the specific devices listed. Given a set of polkit actions defined by the vehicle1131

device daemon, these rules should permit those actions for the bundle.1132

For example, the daemon could define the polkit actions:1133

• org.apertis.vehicle_device_daemon.EnumerateVehicles: To list the avail-1134

able vehicles or subscribe to notifications of changes in the list.1135

• org.apertis.vehicle_device_daemon.EnumerateDevices: To list the avail-1136

able devices on a given vehicle (passed as the vehicle variable on the ac-1137

tion) or subscribe to notifications of changes in the list.1138

• org.apertis.vehicle_device_daemon.ReadProperty: To read a property,1139

i.e. access a sensor, or subscribe to notifications of changes to the property1140

value. The vehicle ID and property name are passed as the vehicle and1141

property variables on the action.1142

• org.apertis.vehicle_device_daemon.WriteProperty: To write a property,1143

i.e. operate an actuator. The vehicle ID, property name and new value1144

are passed as the vehicle, property and value variables on the action.1145

The default rules for all of these actions must be polkit.Result.NO.1146

If a bundle has access to any device, it is safe and necessary to grant it access to1147

enumerate all vehicles and devices (the Enumerate* actions above) — otherwise1148

the bundle cannot check for the presence of the devices it requires. Knowledge1149

of which devices are connected to the vehicle should not be especially sensitive1150

— it is expected that there will not be a sufficient variety of devices connected1151

to a single vehicle to allow fingerprinting of the vehicle from the device list, for1152

example.1153

An application bundle, org.example.AccelerateMyMirror, which requests1154

access to the vehicle.throttlePosition.value property (a sensor) and the vehi-1155

cle.mirror.mirrorPan property (an actuator) would therefore have the following1156

polkit rule generated in /etc/polkit-1/rules.d/20-org.example.AccelerateMyMirror.rules:1157

polkit.addRule (function (action, subject) {1158

if (subject.credentials != 'org.example.AccelerateMyMirror') {1159

46http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html

33

http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html
http://www.freedesktop.org/software/polkit/docs/master/polkit.8.html

/* This rule only applies to this bundle.1160

* Defer to other rules to handle other bundles. */1161

return polkit.Result.NOT_HANDLED;1162

}1163

1164

if (action.id == 'org.apertis.vehicle_device_daemon.EnumerateVehicles' ||1165

action.id == 'org.apertis.vehicle_device_daemon.EnumerateDevices') {1166

/* Always allow these. */1167

return polkit.Result.YES;1168

}1169

1170

if (action.id == 'org.apertis.vehicle_device_daemon.ReadProperty' &&1171

action.lookup ('property') == 'vehicle.throttlePosition.value') {1172

/* Allow access to this specific property. */1173

return polkit.Result.YES;1174

}1175

1176

if (action.id == 'org.apertis.vehicle_device_daemon.WriteProperty' &&1177

action.lookup ('property') == 'vehicle.mirror.mirrorPan') {1178

/* Allow access to this specific property,1179

* with user authentication. */1180

return polkit.Result.AUTH_USER;1181

}1182

1183

/* Deny all other accesses. */1184

return polkit.Result.NO;1185

});1186

In the rules, the subject is always the program in the bundle which is requesting1187

access to the device.1188

Open question: What is the exact security policy to implement regarding1189

separation of sensors and actuators? For example, bundle access to sensors1190

could always be permitted without prompting by returning polkit.Result.YES1191

for all sensor accesses; but actuator accesses could always be prompted to the1192

user by returning polkit.Result.AUTH_SELF. The choice here depends on the1193

desired user experience.1194

Vehicle device daemon and a backend service1195

The boundary between the vehicle device daemon and one of its backend services1196

is the Sensors and Actuators hardware API, implemented by the daemon and1197

exposed over D-Bus. The backend service’s AppArmor profile will grant access1198

to call any method on this interface. Note that AppArmor is not used to grant1199

or deny permissions to expose particular properties — it is not fine-grained1200

enough, and is limited to allowing or denying access to the API as a whole.1201

34

In order to limit the potential for a compromised backend service to escalate its1202

compromise into providing malicious sensor data for any sensor on the system,1203

each backend service must install a file which lists the Vehicle Data properties1204

it might possibly ever provide to the vehicle device daemon. The vehicle device1205

daemon must reject properties from a backend service which are not in this list.1206

The list must not be modifiable by the backend service after installation (i.e. it1207

must be read-only, readable by the vehicle device daemon).1208

Furthermore, if a backend service is found to be exploitable after being deployed,1209

it must be possible for the vehicle device daemon to disable it. This is expected1210

to typically happen with backend services provided by application bundles, as1211

opposed to those provided by OEMs or third parties (as these should go through1212

stricter review, and disabling them would have a much larger impact). The1213

vehicle device daemon must have a blacklist of backend services which it never1214

loads. It must check the credentials of D-Bus messages from backend services1215

against this blacklist.1216

Using GetConnectionCredentials, which returns an unforgeable1217

identifier for the peer: http://dbus.freedesktop.org/doc/dbus-1218

specification.html#bus-messages-get-connection-credentials1219

In order to support one (vulnerable) version of a backend service being black-1220

listed, but not the next (fixed) version, the blacklist must contain version num-1221

bers, which should be compared against the installed version number of the1222

backend service as listed in the system-wide application bundle manifest store.1223

Vehicle device daemon and the rest of the system1224

The vehicle device daemon itself must not be able to access any of the vehicle1225

buses or any networks. It must be run as a unique user, which owns the daemon’s1226

binary, with its DAC permissions set such that other users (except root) cannot1227

run it. It must not have access to any device files. See §9, Protecting the driver1228

assistance system from attacks, of the Security design for more details.1229

Backend service and another backend service or the rest of the system1230

1231

In order to guarantee it is the only program which can access a particular vehicle1232

bus or network, each backend service should run as a unique user. The service’s1233

binary must be owned by that user, with its DAC permissions set such that1234

other users (except root) cannot run it. Any device files which it uses for access1235

to the underlying vehicle networks must be owned by that user, with their DAC1236

permissions set such that other users cannot access them, and udev rules in place1237

to prevent access by other users. If the backend needs access to a (local) network1238

interface to communicate with the vehicle network buses, that interface must1239

be put in a separate network namespace, and the CLONE_NEWNET flag used1240

when spawning the backend service to put it in that namespace. This prevents1241

the service from accessing other network interfaces; and prevents other processes1242

35

http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials
http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials
http://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-get-connection-credentials

from accessing the buses. See §9, Protecting the driver assistance system from1243

attacks, of the Security design for more details.1244

SDK emulator1245

Typically, it should not be possible for one program to have access to both1246

the vehicle device daemon’s SDK API and its hardware API (this access is1247

controlled by AppArmor). However, the SDK emulator is a special case which1248

needs access to both — so either this must be possible as a special case, or the1249

SDK emulator must be split into a backend service process and a UI process,1250

which communicate via another D-Bus connection.1251

Apertis store validation1252

Application bundles which request permissions to access devices must undergo1253

additional checks before being put on the Apertis store. This is especially im-1254

portant for bundles which request access to actuators, as those bundles are then1255

potentially safety critical.1256

Checks for access to sensors1257

Suggested checks for bundles requesting read access to sensors:1258

• The bundle does not send privacy-sensitive data to services outside the1259

user’s control (for example, servers not operated by the user; see the User1260

Data Manifesto47), either via network transmission, logging to local stor-1261

age, or other means, without the user’s consent. Any data sent with the1262

user’s consent must only be sent to services which follow the User Data1263

Manifesto. For example (this list is not exhaustive):1264

– Tracking the vehicle’s movements.1265

– Monitoring the user’s conversations (audio recording).1266

• The bundle does not have access to uniquely identifiable information, such1267

as a vehicle identification number (VIN). Any exceptions to this would1268

need stricter review.1269

• The bundle clearly indicates when it is gathering privacy-sensitive data1270

from sensors. For example, a ‘recording’ light displayed in the UI when1271

listening using a microphone.1272

1.1273

Checks for access to actuators1274

Suggested checks for bundles requesting write access to actuators:1275

• The bundle does not additionally have network access.1276

47https://userdatamanifesto.org/

36

https://userdatamanifesto.org/
https://userdatamanifesto.org/
https://userdatamanifesto.org/
https://userdatamanifesto.org/

• Actuators are only operated while the vehicle is not driving. Any excep-1277

tions to this would need even stricter review.1278

• Manual code review of the entire bundle’s source code by a developer1279

with security experience. The entire source code must be made available1280

for review by the bundle developer, as it is all run in the same security1281

domain. For example (this list is not exhaustive):1282

– Looking for ways the bundle could potentially be exploited by an1283

attacker.1284

– Checking that the bundle cannot use the actuator inappropriately1285

during normal operation if it encounters unexpected circumstances.1286

(For example, checking that arithmetic bugs don’t exist which could1287

cause an actuator to be operated at a greater magnitude than in-1288

tended by the bundle developer.)1289

Open question: The specific set of Apertis store validation checks for bundles1290

which access devices is yet to be finalised.1291

Checks for backend services1292

Suggested checks for backend services for the vehicle device daemon, whether1293

they are provided by an OEM, a third party or as part of an application bundle:1294

• The backend service does not additionally have network access.1295

• The backend service does not have write access to any of the file system1296

except devices it needs, and the D-Bus socket.1297

• The backend service cannot access any more device nodes than it needs1298

to support its devices.1299

• Manual code review of the entire bundle’s source code by a developer1300

with security experience. The entire source code must be made available1301

for review by the bundle developer, as it is all run in the same security1302

domain. For example (this list is not exhaustive):1303

– Looking for ways the backend service could potentially be exploited1304

by an attacker.1305

– Checking that the backend service cannot use any of its actuator in-1306

appropriately during normal operation if it encounters unexpected1307

circumstances. (For example, checking that arithmetic bugs don’t1308

exist which could cause an actuator to be operated at a greater mag-1309

nitude than intended by the developer.)1310

• The backend service’s D-Bus service is only accessible by the vehicle device1311

daemon (as enforced by AppArmor).1312

37

• If other software is shipped in the same application bundle, it must be1313

considered to be part of the same security domain as the backend service,1314

and hence subject to the same validation checks.1315

• The backend service must pass the automated compliance test (Hardware1316

API compliance testing).1317

• The backend service must not expose any properties which are not sup-1318

ported by the version of the vehicle device daemon which it targets as its1319

minimum dependency (see Vehicle device daemon for information about1320

the extension process).1321

Suggested roadmap1322

Due to the large amount of work required to write a system like this from1323

scratch, it is worth exploring whether it can be developed in stages.1324

The most important parts to finalise early in development are the SDK and hard-1325

ware APIs, as these need to be made available to bundle developers and OEMs1326

to develop bundles and the backend services. There seems to be little scope for1327

finalising these APIs in stages, either (for example by releasing property access1328

APIs first, then adding vehicle and device enumeration), as that would result in1329

early bundles which are incompatible with multi-vehicle configurations.1330

Similarly, it does not seem to be possible to implement one of the APIs before1331

the other. Due to the fragmented nature of access to vehicle networks, the1332

backend needs to be written by the OEM, rather than relying on one written1333

by Apertis for early versions of the system.1334

Furthermore, the security implementation for the vehicle device daemon must1335

be part of the initial release, as it is safety critical.1336

One area where phased development is possible is in the set of properties itself1337

— initial versions of the daemon and backends could implement a small, core1338

set of the properties defined in the VSS Ontology (VSSo)48, and future versions1339

could expand that set of properties as time is available to implement them. As1340

each property is a public API, it must be supported as part of the SDK one it1341

has appeared in a released version of the daemon, so it is important to design1342

the APIs correctly the first time.1343

Similarly, the scope for backend services could be expanded over time. Initial1344

releases of the system could allow only backend services written by vehicle OEMs1345

to be used; with later releases allowing third-party backend services, then ones1346

provided by installed application bundles.1347

The emulator backend service (SDK API compliance testing and simulation)1348

and any SDK hardware backend services (SDK hardware) should be imple-1349

mented early on in development, as they should be relatively simple, and hav-1350

48https://www.w3.org/Submission/vsso/

38

https://www.w3.org/Submission/vsso/
https://www.w3.org/Submission/vsso/

ing them allows application developers to start writing applications against the1351

service.1352

Requirements1353

• Enumeration of devices: The availability of known properties of the vehicle1354

can be checked through the Availability interface49. The W3C approach1355

considers properties, rather than devices, to be the enumerable items, but1356

they are mostly equivalent (see Properties vs devices).1357

• Enumeration of vehicles: The availability of objects implementing the1358

W3C Vehicle interface on D-Bus is exposed using an interface like the1359

D-Bus ObjectManager API.1360

• Retrieving data from sensors: Properties can be retrieved through the1361

VehicleInterface interface50. For high bandwidth sensors, or those with1362

latency requirements for the end-to-end connection between sensor and1363

bundle, data is transferred out of band (see High bandwidth or low latency1364

sensors).1365

• Sending data to actuators: Properties can be set through the VehicleSig-1366

nalInterface51 interface. As with getting properties, data for high band-1367

width or low latency sensors is transferred out of band.1368

• Network independence: The vehicle device daemon abstracts access to the1369

underlying buses, so bundles are unaware of it.1370

• Bounded latency of processing sensor data: The vehicle device daemon1371

should have its scheduling configuration set so that it can provide latency1372

guarantees for the underlying buses.1373

• Extensibility for OEMs: Extensions are standardised through Apertis and1374

released in the next version of the Sensors and Actuators API for use by1375

the OEM.1376

• Third-party backends: Backend services for the vehicle device daemon1377

can be installed as part of application bundles (either built-in or store1378

bundles).1379

• Third-party backend validation: Backend services must be validated be-1380

fore being installed as bundles (see Checks for backend services).1381

• Notifications of changes to sensor data: Property changes are notified1382

via a publish–subscribe interface on VehicleSignalInterface52. Notification1383

thresholds are supported by optional parameters on that interface.1384

49http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
50https://www.w3.org/Submission/vsso/#Vehicle
51http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-

subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
52http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-

subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

39

http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
https://www.w3.org/Submission/vsso/#Vehicle
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#data-availability
https://www.w3.org/Submission/vsso/#Vehicle
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone
http://www.w3.org/2014/automotive/vehicle_spec.html#widl-VehicleSignalInterface-subscribe-unsigned-short-VehicleInterfaceCallback-callback-Zone-zone

• Uncertainty bounds: The W3C API is extended to include uncertainty1385

bounds for measurements.1386

• Failure feedback: Through its use of Promises53, the API allows for failure1387

to set a property.1388

• Timestamping: The W3C API is extended to include timestamps for mea-1389

surements.1390

• Triggering bundle activation: Programs are woken by subscriptions to1391

property changes (see Registering triggers and actions).1392

• Bulk recording of sensor data: Not currently implemented, but may1393

be implemented in future as a straightforward extension to the API. See1394

Bulk recording of sensor data.1395

• Sensor security: Access to the Sensors and Actuators API is controlled by1396

an AppArmor profile generated from permissions in the manifest. Access1397

to individual sensors is controlled by a polkit rule generated from the same1398

permissions. See Security.1399

• Actuator security: As with Sensor security; sensors and actuators are1400

listed and controlled by the polkit profile separately.1401

• App-store knowledge of device requirements: As devices required by an1402

application bundle are listed in the bundle’s manifest (see Security), the1403

Apertis store knows whether the bundle is supported by the user’s vehicle.1404

• Accessing devices on multiple vehicles: Each vehicle is exposed as a sepa-1405

rate D-Bus object, each implementing the W3C Vehicle interface.1406

• Third-party accessories: Properties for third-party accessories must be1407

standardised through Apertis and exposed as separate interfaces on the1408

vehicle object on D-Bus.1409

• SDK hardware support: SDK hardware should be supported through a1410

separate development-only backend service written specifically for that1411

hardware.1412

Open questions1413

1. Hardware and app APIs: The exact definition of the SDK API is yet to1414

be finalised. It should include support for accessing multiple properties in1415

a single IPC round trip, to reduce IPC overheads.1416

2. Interactions between backend services: The exact means for aggregating1417

each property in the Vehicle Data specification is yet to be determined.1418

3. Security domains: What is the exact security policy to implement re-1419

garding separation of sensors and actuators? For example, bundle access1420

53http://www.w3.org/TR/2013/WD-dom-20131107/#promises

40

http://www.w3.org/TR/2013/WD-dom-20131107/#promises
http://www.w3.org/TR/2013/WD-dom-20131107/#promises

to sensors could always be permitted without prompting by returning1421

polkit.Result.YES for all sensor accesses; but actuator accesses could al-1422

ways be prompted to the user by returning polkit.Result.AUTH_SELF.1423

The choice here depends on the desired user experience.1424

4. Apertis store validation: The specific set of Apertis store validation checks1425

for bundles which access devices is yet to be finalised.1426

Summary of recommendations1427

As discussed in the above sections, we recommend:1428

• Implementing a vehicle device daemon which exposes the W3C Vehicle1429

Information Access API; this will probably need to be developed from1430

scratch.1431

• Documenting the hardware API and distributing it to OEMs, third parties1432

and application developers along with a compliance test suite and a com-1433

mon utility library to allow them to build backend services for accessing1434

vehicle networks.1435

• Documenting the SDK API and distributing it to application bundle de-1436

velopers along with a validation suite and simulator to allow them to build1437

programs which use the API.1438

• Provide example trip logs for journeys to test against and a method for1439

replaying them via the vehicle device daemon, so application developers1440

can test their applications.1441

• Defining how to aggregate multiple values of each property in the W3C1442

Vehicle Data API.1443

• Extending the W3C Vehicle Information Service Specification to expose1444

uncertainty and timestamp data for each property.1445

• Extending the W3C Vehicle Information Service Specification to expose1446

multiple vehicles and notify of changes using an interface like D-Bus Ob-1447

jectManager.1448

• Extending the W3C Vehicle Information Service Specification to support1449

a range of interest for property change notifications.1450

• Adding a property to the application bundle manifest listing which device1451

properties programs in the bundle may access if they exist.1452

• Adding a property to the application bundle manifest listing which device1453

properties programs in the bundle require access to.1454

• Extending the Apertis store validation process to include relevant checks1455

when application bundles request permissions to access sensors (privacy1456

41

sensitive) or actuators (safety critical). Or when application bundles re-1457

quest permissions to provide a vehicle device daemon backend service1458

(safety critical).1459

• Modifying the Apertis software installer to generate AppArmor rules to1460

allow D-Bus calls to the vehicle device daemon if device properties are1461

listed in the application bundle manifest.1462

• Modifying the Apertis software installer to generate polkit rules to grant1463

an application bundle access to specific devices listed in the application1464

bundle manifest.1465

• Implementing and auditing strict DAC and MAC protection on the vehicle1466

device daemon and each of its backend services, and identity checks on all1467

calls between them.1468

• Defining a feedback and standardisation process for OEMs to request new1469

properties or device types to be supported by the vehicle device daemon’s1470

API.1471

Sensors and Actuators API1472

This sections aims to compare the current status of the Vehicle device daemon1473

for the sensors and actuators SDK API (Rhosydd54) with the latest W3C spec-1474

ifications: the Vehicle Information Service Specification55 API and the Vehicle1475

Signal Specification56 data model.1476

It will also explain the required changes to align Rhosydd to the new W3C1477

specifications.1478

Rhosydd API Current State1479

The current Rhosydd API is stable and usable implementing the Vehicle Infor-1480

mation Service Specification57 and using the data model specified by the Vehicle1481

Signal Specification58.1482

Considerations to align Rhosydd to the new VISS API1483

1. The original Vehicle API and the Rhosydd API don’t exactly match 1:1 as1484

the latter has been adapted to follow the inter-process D-Bus constraints1485

and best-practice, which are somewhat different than the ones for a in-1486

process JavaScript API.1487

54https://gitlab.apertis.org/pkg/rhosydd
55https://www.w3.org/TR/vehicle-information-service/
56https://github.com/GENIVI/vehicle_signal_specification
57https://www.w3.org/TR/vehicle-information-service/
58https://github.com/GENIVI/vehicle_signal_specification

42

https://gitlab.apertis.org/pkg/rhosydd
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://gitlab.apertis.org/pkg/rhosydd
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification

New vs Old Specification1488

1. The Vehicle Data Specification59 data model uses attributes (data) and1489

interface objects, where VISS uses the Vehicle Signal Specification60 data1490

model which is based on a signal tree structure containing different entities1491

types (branches, rbranches, signals, attributes, and elements).1492

2. The Vehicle Information Service Specification61 API objects are defined as1493

JSON objects that will be passed between the client and the VIS Server,1494

where Rhosydd is currently based on accessing attributes values using1495

interface objects.1496

3. VISS defines a set of Request Objects and Response Objects (de-1497

fined as JSON schemas), where the client must pass request messages to1498

the server and they should be any of the defined request objects, in the1499

same way, the message returned by the server must be one of the defined1500

response objects.1501

4. The request and response parameters contain a number of attributes,1502

among them the Action attribute which specify the type of action re-1503

quested by the client or delivered by the server.1504

5. VISS lists well defined actions for client requests: authorize, getMetadata,1505

get, set, subscribe, subscription, unsubscribe, unsubscribeAll.1506

6. The Vehicle Signal Specification62 introduces the concept of signals. They1507

are just named entities with a producer (or publisher) that can change its1508

value over time and have a type and optionally a unit type defined.1509

7. The Vehicle Signal Specification63 data model introduces a signal specifica-1510

tion format. This specification is a YAML list in a single file called vspec1511

file. This file can also be generated in other formats (JSON, FrancaIDL),1512

and basically defines the signal and data structure tree.1513

8. The Vehicle Signal Specification introduces the concept of signal ID1514

databases. These are generated from the vspec files, and they basically1515

map signal names to ID’s that can be used for easy indexing of signals1516

without the need of providing the entire qualified signal name.1517

Rhosydd New Changes1518

• The Vehicle Information Service Specification64 API defines the Request1519

and Response Objects using a JSON schema format. The Rhosydd API1520

59http://www.w3.org/2014/automotive/data_spec.html
60https://github.com/GENIVI/vehicle_signal_specification
61https://www.w3.org/TR/vehicle-information-service/
62https://github.com/GENIVI/vehicle_signal_specification
63https://github.com/GENIVI/vehicle_signal_specification
64https://www.w3.org/TR/vehicle-information-service/

43

http://www.w3.org/2014/automotive/data_spec.html
https://github.com/GENIVI/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
http://www.w3.org/2014/automotive/data_spec.html
https://github.com/GENIVI/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://www.w3.org/TR/vehicle-information-service/

(both the application-facing and backend-facing ones) has been updated1521

to provide a similar API based on idiomatic DBus methods and types.1522

• Maps the different VISS Server actions to handle client requests to their1523

respective DBus methods in Rhosydd.1524

• The internal Rhosydd data model has been updated to support all the1525

element types defined in the Vehicle Signal Specification65.1526

• It might also be required to add support to process signal ID databases1527

in order for Rhosydd to recognize signals specified by the Vehicle Signal1528

Specification.1529

Advantages1530

• The new VISS spec is based on a WebSocket API, and it resembles more1531

closely the inter-process mechanism based on D-Bus in Rhosydd rather1532

than the previous JavaScript in-process mechanism defined by the previous1533

specification.1534

Conclusion1535

The main effort will be about updating the internal Rhosydd data model to1536

reflect the changes introduced in the Vehicle Signal Specification66 data model,1537

with the extended types and metadata.1538

The DBus APIs, both on the application and backend sides, will need to be1539

updated to map to the new data model. From a high-level point of view the1540

old and new APIs are relatively similar, but a non-trivial amount of changes is1541

expected to map the new concepts and to align to the new terminology.1542

The Rhosydd67 client APIs for applications (librhosydd) and backends (libcroe-1543

sor) will need to be updated to reflect the changes in the underlying DBus1544

APIs.1545

Appendix: W3C API1546

For the purposes of completeness, the Vehicle Information Service Specifica-1547

tion68 is reproduced below. This is the version from the Final Business Group1548

Report 26 June 2018, and does not include the Vehicle Signal Specification69 for1549

brevity. The API is described as WebIDL70, and partial interfaces have been1550

merged.1551

65https://github.com/GENIVI/vehicle_signal_specification
66https://github.com/GENIVI/vehicle_signal_specification
67https://gitlab.apertis.org/pkg/rhosydd
68https://www.w3.org/TR/vehicle-information-service/
69https://github.com/GENIVI/vehicle_signal_specification
70http://www.w3.org/TR/WebIDL/

44

https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://gitlab.apertis.org/pkg/rhosydd
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/TR/WebIDL/
https://github.com/GENIVI/vehicle_signal_specification
https://github.com/GENIVI/vehicle_signal_specification
https://gitlab.apertis.org/pkg/rhosydd
https://www.w3.org/TR/vehicle-information-service/
https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/TR/WebIDL/

[Constructor,1552

Constructor(VISClientOptions options)]1553

interface VISClient {1554

readonly attribute DOMString? host;1555

readonly attribute DOMString? protocol;1556

readonly attribute unsigned short? port;1557

1558

[NewObject] Promise< void> connect();1559

[NewObject] Promise< unsigned long> authorize(object tokens);1560

[NewObject] Promise< Metadata> getMetadata(DOMString path);1561

[NewObject] Promise< VISValue> get(DOMString path);1562

[NewObject] Promise< void> set(DOMString path, any value);1563

VISSubscription subscribe(DOMString path, SubscriptionCallback subscriptionCallback, ErrorCallback errorCallback,optional VISSubscribeFilters filters);1564

[NewObject] Promise< void> unsubscribe(VISSubscription subscription);1565

[NewObject] Promise< void> unsubscribeAll();1566

[NewObject] Promise< void> disconnect();1567

};1568

1569

dictionary VISClientOptions {1570

DOMString? host;1571

DOMString? protocol;1572

unsigned short? port;1573

};1574

1575

dictionary VISValue {1576

any value;1577

DOMTimeStamp timestamp;1578

};1579

1580

dictionary VISError {1581

unsigned short number;1582

DOMString? reason;1583

DOMString? message;1584

DOMTimeStamp timestamp;1585

};1586

1587

enum Availability {1588

"available",1589

"not_supported",1590

"not_supported_yet",1591

"not_supported_security_policy",1592

"not_supported_business_policy",1593

"not_supported_other"1594

};1595

45

	Terminology and concepts
	Vehicle
	Intra-vehicle network
	Inter-vehicle network
	Sensor
	Actuator
	Device

	Use cases
	Augmented reality parking
	Virtual mechanic
	Petrol station finder
	Sightseeing application bundle
	Changing bundle functionality when driving at speed
	Changing audio volume with vehicle or cabin noise
	Night mode
	Weather feedback or traffic jam feedback
	Insurance bundle
	Driving setup bundle
	Odour detection
	Air conditioning control
	Agricultural vehicle
	Roof box
	Truck installations
	Compromised application bundle
	Ethernet intra-vehicle network
	Development against the SDK

	Non-use-cases
	Bluetooth wrist watch and the Internet of Things
	Car-to-car and car-to-infrastructure communications
	Buddied and vehicle fleet communications

	Requirements
	Enumeration of devices
	Enumeration of vehicles
	Retrieving data from sensors
	Sending data to actuators
	Network independence
	Bounded latency of processing sensor data
	Extensibility for OEMs
	Third-party backends
	Third-party backend validation
	Notifications of changes to sensor data
	Uncertainty bounds
	Failure feedback
	Timestamping
	Triggering bundle activation
	Bulk recording of sensor data
	Sensor security
	Actuator security
	App store knowledge of device requirements
	Accessing devices on multiple vehicles
	Third-party accessories
	SDK hardware support

	Background on intra-vehicle networks
	Existing sensor systems
	W3C Vehicle Information Service Specification (VISS)
	GENIVI Web API Vehicle
	Apple HomeKit
	Apple External Accessory API
	iOS CarPlay
	Android Auto
	MirrorLink
	Android Sensor API
	Automotive Message Broker
	AllJoyn

	Approach
	Overall architecture
	Vehicle device daemon
	Hardware and app APIs
	Hardware API compliance testing
	SDK API compliance testing and simulation
	SDK hardware
	Trip logging of sensor data
	Properties vs devices
	Property naming
	High bandwidth or low latency sensors
	Timestamps and uncertainty bounds
	Registering triggers and actions
	Bulk recording of sensor data
	Security
	Suggested roadmap
	Requirements

	Open questions
	Summary of recommendations
	Sensors and Actuators API
	Rhosydd API Current State
	Considerations to align Rhosydd to the new VISS API
	New vs Old Specification
	Rhosydd New Changes
	Advantages
	Conclusion
	Appendix: W3C API

