
Integration of OP-TEE in Apertis

Contents1

System Architecture 32

Boot Process . 43

Trusted Applications . 54

Virtualization Support . 55

Container Support . 76

Advanced topology support 87

Proxying TEE Access . 88

Low impact hypervisor support for TEE 109

Enabling TEE in Apertis 1110

Reference Platform Selection . 1211

Core components . 1312

Secure Boot . 1313

ARM Trusted Firmware . 1314

OP-TEE OS . 1415

Linux Kernel . 1416

OP-TEE Supplicant and User Space Libraries 1417

Sample TAs . 1418

Debos Scripting . 1519

Hypervisor Integration . 1520

Xen Hypervisor . 1521

Linux Kernel . 1622

Dual configuration build of OP-TEE 1623

TEE Proxy . 1624

Low Impact Hypervisor Support . 1625

Test Integration 1726

Some projects that wish to use Apertis have a requirement for strong security27

measures to be available in order to implement key system level functionality.28

A typical use case is enabling the decryption of protected content in such a way29

that doesn’t allow the owner of the device doing the decryption to access the30

decryption keys. Another use for strong security is the protection of authenti-31

cation keys. By shielding such keys within these strong security measures, it32

becomes much harder for the keys to be stolen and be used to impersonate the33

legitimate user.34

2

Cloud
Service

Apertis
Application

Secure
Environment

Cloud
Service

Apertis
Application

Secure
Environment

2) Challenge returned

1) Access request

3) Request to sign

4) Signed challenge returned

5) Signed challenge sent

35

In the above example, when requesting access to the cloud service, the service36

returns a challenge response, which needs to be signed using asymmetric cryp-37

tography1. The Apertis application requests that functionality in the secure38

environment sign the challenge using a private key that it stores securely. The39

signed challenge is then returned to the cloud service, which checks the validity40

of the signature using the public key that it holds to authenticate the user.41

Such systems may additionally require the state of the system to be verified42

(typically by building a chain of trust2) before use of the secure keys is allowed,43

thus ensuring the device hasn’t been altered in ways which may compromise44

protection of the keys.45

Whilst a system could be architected to utilize a separate processor to perform46

such tasks, this significantly drives up system complexity and cost. Some plat-47

forms provide a mechanism to enable a secure, trusted environment or “Trusted48

Execution Environment3” (TEE) to be setup. A TEE runs on the application49

processor, but with mechanisms in place to isolate the code or data of the two50

running systems (the TEE and the main OS) from each other. ARM provides51

an implementation of such security mechanisms, known as ARM TrustZone4,52

mainly on Cortex-A processors.53

1https://en.wikipedia.org/wiki/Public-key_cryptography
2https://en.wikipedia.org/wiki/Chain_of_trust
3https://en.wikipedia.org/wiki/Trusted_execution_environment
4https://developer.arm.com/ip-products/security-ip/trustzone

3

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Chain_of_trust
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://developer.arm.com/ip-products/security-ip/trustzone
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Chain_of_trust
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://developer.arm.com/ip-products/security-ip/trustzone

System Architecture54

OP-TEE

ARM Trusted Firmware

Trusted ApplicationApertis Application

Linux Kernel

tee-supplicant

tee subsystem

TEE Client API Library

OP-TEE driver

TEE Internal API

55

A TEE exists as a separate environment running in parallel with the main op-56

erating system. At boot, both of these environments need to be loaded and57

initialized, this is achieved by running special boot firmware which enables the58

TrustZone security features and loads the required software elements. When59

enabled, a “secure monitor” runs in the highest privilege level provided by the60

processor. The secure monitor supports switching between the trusted and61

untrusted environments and enabling messages to be passed from one environ-62

ment to the other. ARM provide a reference secure monitor as part of the ARM63

Trusted Firmware5 (ATF) project. The ATF secure monitor provides an API to64

enable the development of trusted operating systems to run within the trusted65

environment, one such trusted OS is the open source OP-TEE6. OP-TEE pro-66

vides a trusted environment which can run Trusted Applications (TAs), which67

are written against the TEE internal API.68

As well as starting up a trusted OS in the trusted environment, ATF typi-69

cally starts a standard OS such as Linux on the untrusted side, known as the70

rich operating system or “Rich Execution Environment” (REE), by running the71

firmware normally used for this OS. It is necessary for the OS to have drivers72

capable of interfacing with the secure monitor and that understands how to73

format messages for the trusted OS used on the trusted side. Linux contains74

a TEE subsystem7 which provides a standardized way to communicate with75

TEE environments. The OP-TEE project have upstreamed a driver8 to this76

subsystem to enable communications with the OP-TEE trusted environment.77

OP-TEE relies on the REE to provide a number of remote services, such as file78

system access, as it does not have drivers for this functionality itself. The OP-79

5https://github.com/ARM-software/arm-trusted-firmware
6https://www.op-tee.org/
7https://www.kernel.org/doc/Documentation/tee.txt
8https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/tee/

optee

4

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://www.op-tee.org/
https://www.kernel.org/doc/Documentation/tee.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/tee/optee
https://github.com/ARM-software/arm-trusted-firmware
https://www.op-tee.org/
https://www.kernel.org/doc/Documentation/tee.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/tee/optee
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/tee/optee

TEE project provides a Linux user space supplicant daemon9 which supplies the80

services required by the trusted environment. A library is also provided which81

implements a standardized mechanism, documented in the GlobalPlatform TEE82

Client API Specification v1.010, for communicating with the TEE. It is expected83

for this library to be used by applications needing to communicate with the TAs.84

Boot Process85

From a high level, the basic change required to the boot process is that the TEE86

needs to be setup before the REE. The factor missing from this description is87

security. In order for the TEE to be able to achieve it’s stated goal, providing a88

secure environment, it is necessary for the boot process to be able to guarantee89

that at least the setup of the TEE has not been tampered with. Such guarantees90

are provided by enabling secure boot for the relevant platform.91

The process used to perform a secure boot is dependent on the mechanisms92

provided by the platform which vary from vendor to vendor. Typically it re-93

quires the boot process to be locked down to boot from known storage (such94

as a specific flash device) and for the boot binaries to be signed so that they95

can be verified at boot. The keys used for verification are usually read-only and96

held in fuses within the SoC.97

The signed binaries comprise a series of bootloaders which progressively bring98

up the system, each being able to perform a bit more of the process utilizing99

support enabled by earlier bootloaders. This series of bootloaders will load the100

secure monitor (known as EL3 Runtime Software in this context), OP-TEE (the101

Secure-EL1 Payload) and finally U-Boot (the Non-trusted Firmware), which loads102

Linux.103

The ARMv8 architecture provides 4 privilege levels. The lowest privilege level,104

PL0, is used for executing user code under an OS or hypervisor. The next level,105

PL1, is used for running an OS like Linux, with PL2 above it available to run106

a hypervisor. The highest level PL3 is used for the secure monitor.107

A more in-depth description of the boot process can be found in the OP-TEE108

documentation11.109

Trusted Applications110

Trusted Applications (TAs) are applications that run within the trusted environ-111

ment, on top of OP-TEE. Trusted Applications are used to provide the secured112

services and functionality that is needed in the platform. The TAs are identified113

by a UUID and are usually loaded from a file stored in the untrusted file system114

named after the UUID. In order to ensure the TAs haven’t been tampered with115

they are signed. If the contents of the TA should remain protected, there are116

9https://github.com/OP-TEE/optee_client
10https://globalplatform.org/specs-library/tee-client-api-specification/
11https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html

5

https://github.com/OP-TEE/optee_client
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html
https://github.com/OP-TEE/optee_client
https://globalplatform.org/specs-library/tee-client-api-specification/
https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html

options for storing it encrypted for further protection. Alternatively, if a TA is117

required before the tee-supplicant is running (and hence able to access the TA118

from the file system), TAs can also be built into the firmware as an early TA. A119

more in-depth description of TA implementation can be found in the OP-TEE120

documentation12.121

The OP-TEE project provides a number of TA examples13.122

Trusted Applications provide immense flexibility in the functionality that can123

be provided from the TEE environment. This flexibility is such that a proof of124

concept has been completed implementing a TPM 2.0 implementation14 that125

can be used in OP-TEE15.126

Virtualization Support127

As the hypervisor and secure monitor each have a separate privilege level, it is128

possible for the TEE to co-exist with systems running a hypervisor. Whilst it129

is possible for the two to exist, a number of adaptions need to be made to allow130

communications to happen.131

When running on a hypervisor, the guest OS uses intermediate physical ad-132

dresses (IPAs) rather than physical memory addresses. These IPAs are then133

translated by the hypervisor to real physical addresses. The TEE concept was134

not developed with hypervisors in mind and the REE expects to pass the mem-135

ory regions it uses for communicating with the TEE as physical addresses. How-136

ever, unlike the TEE, the guest OS (acting as the REE) does not have access137

to the actual physical addresses, which will lead to miss-communication as to138

where data is stored. The hypervisor also needs to know that the contents of the139

used regions of physical memory can’t be swapped out whilst communication140

between the TEE and REE is on going. Additionally something would need to141

keep track of which VM made the request so the response can be passed back142

to the right VM and handle situations such as the VM dying whilst the TEE143

was handling a request.144

It is therefore necessary for both the TEE and hypervisor to be modified for145

things to function. Virtualization support has already been added to OP-TEE146

and experimental support16 has been added to the Xen hypervisor running on an147

emulated ARMv8 system. The current approach modifies OP-TEE to provide148

a common TEE infrastructure with separate TEE contexts made available for149

each of the Virtual Machines (VMs) in which the trusted applications for each150

VM run.151

12https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
13https://github.com/linaro-swg/optee_examples
14https://github.com/Microsoft/ms-tpm-20-ref
15https://github.com/jbech-linaro/manifest/tree/ftpm
16https://optee.readthedocs.io/en/latest/architecture/virtualization.html

6

https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://github.com/linaro-swg/optee_examples
https://github.com/Microsoft/ms-tpm-20-ref
https://github.com/jbech-linaro/manifest/tree/ftpm
https://optee.readthedocs.io/en/latest/architecture/virtualization.html
https://optee.readthedocs.io/en/latest/architecture/trusted_applications.html
https://github.com/linaro-swg/optee_examples
https://github.com/Microsoft/ms-tpm-20-ref
https://github.com/jbech-linaro/manifest/tree/ftpm
https://optee.readthedocs.io/en/latest/architecture/virtualization.html

OP-TEE
CommonHypervisor

Trusted
Application

Apertis
Application

Linux
Kernel

TEE

TEE Client API

driver

Internal API

ARM Trusted Firmware

TEE Mediator

TEE ContextTEE Context

Apertis
Application

Linux
Kernel

TEE

TEE Client API

driver

Trusted
Application

Internal API

REE 1 REE 2 TEE 1 TEE 2

152

This works in conjunction with support from the hypervisor to provide memory153

mapping and to provide enumeration of the VMs so that the right context is154

used for each VM. The functionality added to the hypervisor is called the “TEE155

mediator”. The advantage of this approach is that, whilst it requires changes156

the TEE and hypervisor, it keeps the API as seen by the guest OS and trusted157

applications the same, and thus existing applications and TAs do not need to158

be made aware of the virtualization used on the platform.159

The virtualization support currently available in OP-TEE is configured at160

build time. A build supporting virtualization will currently not work in161

non-virtualized environments and vice versa. Thus separate builds will be162

required for each of these instances.163

Access to hardware resources, such as cryptographic engines, has not been made164

virtualization aware and thus can’t currently be handled safely between TEE165

contexts nor ensure that data from these resources isn’t leaked between TEE166

contexts or to the REEs. Thus such hardware is not currently supported when167

virtualization is enabled17 in OP-TEE.168

Container Support169

Containers, such as LXC containers, provide a significant level of isolation be-170

tween the processes running in each container and the main host operating171

system, however each of these environments utilizes a shared kernel. Unless ex-172

plicitly denied (such as by using LXC’s cgroup support) each of the containers173

will have the ability to make calls to the TEE.174

17https://optee.readthedocs.io/en/latest/architecture/virtualization.html?highlight=
virtualization#sharing-hardware-resources-and-ptas

7

https://optee.readthedocs.io/en/latest/architecture/virtualization.html?highlight=virtualization#sharing-hardware-resources-and-ptas
https://optee.readthedocs.io/en/latest/architecture/virtualization.html?highlight=virtualization#sharing-hardware-resources-and-ptas
https://optee.readthedocs.io/en/latest/architecture/virtualization.html?highlight=virtualization#sharing-hardware-resources-and-ptas
https://optee.readthedocs.io/en/latest/architecture/virtualization.html?highlight=virtualization#sharing-hardware-resources-and-ptas
https://optee.readthedocs.io/en/latest/architecture/virtualization.html?highlight=virtualization#sharing-hardware-resources-and-ptas

OP-TEE

ARM Trusted Firmware

Linux Kernel

Internal API

Linux
Container

TEE

TEE Library

Application Trusted
Application

Linux
Container

TEE Library

Application

Linux
Host

175

We expect that calls between the containers and TEE would work, however un-176

like when virtualization is utilized, the TEE will not provide a separate context177

for each of the REEs and as such it is likely that, depending on the trusted178

applications installed, it might be possible for some data to leak between the179

containers via the TEE.180

More investigation work is required to understand the impact of this topology181

on the tee-supplicant. It is currently unclear whether it would be possible to182

have more than one instance of the tee-supplicant. Running the tee-supplicant183

on the host may be an option, though this may provide a way for containers184

to bypass their containment, by getting the supplicant to perform operations185

on or from the host. Additionally, the tee-supplicant can be extended with186

plugins18. For this to function, the tee-supplicant would realistically need to be187

in the container and thus a tee-supplicant would probably be needed by each188

container that needed one.189

In the event that the TEE can not be directly utilized by containers it will be190

possible to utilize a TEE proxy as described later.191

Advanced topology support192

It is expected that product teams will want to utilize topologies that go beyond193

what is currently available in OP-TEE. Below we cover a few strategies that we194

envisage could be implemented.195

Proxying TEE Access196

It is expected that some systems will require non-Apertis guests to be run197

alongside Apertis on a hypervisor. These non-Apertis guests may also lack198

18https://github.com/linaro-swg/optee_examples/commit/0607ed40746afe4cb8993149a6f275df648f7bad#
diff-92cd10e6b8b068a931196d1d73a032543d5ca1a5bf445e27a1af74258254517cA

8

https://github.com/linaro-swg/optee_examples/commit/0607ed40746afe4cb8993149a6f275df648f7bad#diff-92cd10e6b8b068a931196d1d73a032543d5ca1a5bf445e27a1af74258254517cA
https://github.com/linaro-swg/optee_examples/commit/0607ed40746afe4cb8993149a6f275df648f7bad#diff-92cd10e6b8b068a931196d1d73a032543d5ca1a5bf445e27a1af74258254517cA
https://github.com/linaro-swg/optee_examples/commit/0607ed40746afe4cb8993149a6f275df648f7bad#diff-92cd10e6b8b068a931196d1d73a032543d5ca1a5bf445e27a1af74258254517cA
https://github.com/linaro-swg/optee_examples/commit/0607ed40746afe4cb8993149a6f275df648f7bad#diff-92cd10e6b8b068a931196d1d73a032543d5ca1a5bf445e27a1af74258254517cA
https://github.com/linaro-swg/optee_examples/commit/0607ed40746afe4cb8993149a6f275df648f7bad#diff-92cd10e6b8b068a931196d1d73a032543d5ca1a5bf445e27a1af74258254517cA

support for TEEs or there may be a desire for all the guest environments to be199

able to access a shared TEE environment. For these instances we would suggest200

the development of a “TEE proxy”. The TEE proxy would be a daemon, which201

provides proxied access to TEE functionality.202

OP-TEE
CommonHypervisor

Application TEE
Proxy

Linux
Kernel

TEE

TEE Client API

driver

Internal API

ARM Trusted Firmware

Mediator

TEE Context
Alternative

OS
Alternative

OS

Trusted
ApplicationApplication

203

The other virtualized environments would utilize a standard mechanism to com-204

municate with the TEE proxy. In order for such a topology to be viable care205

would need to be taken to ensure that communications with the TEE proxy206

could be authenticated and secured. We recommend that a TCP based network207

connection be used to communicate with the TEE proxy. This would allow stan-208

dard security measures that are widely implemented and understood (such as209

SSL) to be used for communications. This could be implemented over a virtual210

network link provided by the hypervisor. Additionally it would be necessary211

for the guest environment hosting the TEE proxy to be trusted as it will have212

access to the communications between the other VMs and the TEE.213

It exact serialisation used over this network link could be D-Bus, though gRPC214

or other RPC mechanism may be a better fit.215

Such a TEE proxy could also be used in other instances, such as when access216

to TEE functionality is required by processes running on a separate core, such217

as a coprocessor, which will not have any access to the TEE environment.218

9

OP-TEE

RTOS

TEE
Proxy

Linux
Kernel

TEE

TEE Client API

driver

Internal API

ARM Trusted Firmware

Trusted
Application

Application ProcessorCoprocessor

219

As before, such a topology would require the TEE proxy to authenticate re-220

quests from the coprocessor, the communications mechanism used would need221

to be secure and the TEE proxy trusted. As the interface between co-processors222

and the rest of the system varies wildly, it is hard to predict exactly how commu-223

nications would be structured. If the co-processor is connected via a serial link,224

then the Point-to-Point Protocol19 (PPP) could be used to enable network con-225

nectivity. In other cases the TEE proxy may need to be customized to support226

communications with the co-processor.227

A similar but slightly different use case would be where containerized applica-228

tions are used, such as Flatpaks. In these instances we suggest that a system229

service exposing higher level functionality than that expected by a TEE proxy230

would be more appropriate.231

19https://en.wikipedia.org/wiki/Point-to-Point_Protocol

10

https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://en.wikipedia.org/wiki/Point-to-Point_Protocol

OP-TEE
CommonHypervisor

Flatpak
System
Service

Linux
Kernel

TEE

TEE Client API

driver

Internal API

ARM Trusted Firmware

Mediator

TEE Context
Linux

OS

Trusted
ApplicationApplication

Flatpak App

232

For example, rather than each Flatpak downloading encrypted downloads and233

passing the content of these to a TA to decrypt via a TEE proxy, a system service234

could be provided to download, validate and decrypt files for the Flatpak apps.235

This would be advantageous as it would reduce the number of hops that data236

would need to take from being downloaded to being available in the container237

decrypted, improving device efficency.238

As with the previous topologies it would still require the system service to be239

trusted, the communication method used between the containerized application240

and the system service, such as a virtual network link, would need to be secure241

and communications with the system service authenticated. We expect such242

a component to be quite user case specific. As a result we do not expect the243

Apertis project to provide an example system service, though expect that the244

TEE proxy would serve as a good reference for the implementation of one.245

Low impact hypervisor support for TEE246

It is likely that system developers will want to utilize different hypervisor im-247

plementations that the one that gets integrated in Apertis. It is believed that248

implementing a TEE mediator will be a relatively complex task and system de-249

velopers may wish to minimize the changes that are required in the hypervisor250

they are using. In instances where a single VM is expected to access the TEE,251

we envisage that cut down support could be added to the hypervisor, though252

more work is required to prove the accuracy of this plan and may be heavily253

effected by the exact choice of hypervisor.254

11

Non-HV
OP-TEE

Alternative Hypervisor

Application TEE
Proxy

Linux
Kernel

TEE

TEE Client API

driver

Internal API

ARM Trusted Firmware

TEE Tunnel

Alternative
OS

Alternative
OS

Trusted
ApplicationApplication

255

This is expected to require the hypervisor to:256

• Only allow one specific guest to call to OP-TEE via SMC and blocking257

any other guest from making SMC calls.258

• Either translate the kernel physical addresses to real physical addresses259

or ensure the Linux kernel can do the translation itself. A minimal imple-260

mentation of this could be an identity mapping in the translation tables of261

the guest so that no actual translation is needed (a flat mapping between262

the intermediate and real physical addresses).263

• Ensure memory areas used for OP-TEE communications are pinned. A264

minimal implementation of this could be for the hypervisor to carve out265

a specific region of physical memory for the guest that it will not touch266

leaving the guest kernel in full control of said memory (allowing it to do267

the pinning).268

One optional, but probably desirable, requirement for the hypervisor would be269

for it to validate the memory regions passed to OP-TEE. This would be required270

to prevent the guest using OP-TEE to access the memory of other guests (or271

even the hypervisor) via OP-TEE.272

Enabling TEE in Apertis273

Apertis does not currently provide the majority of the functionality needed to274

implement a TEE. A number of steps need to be taken in order to enable TEE275

support in Apertis.276

It is expected that the above OP-TEE support would be integrated into Apertis277

in a number of phases:278

Phase Description
0 Suitable reference platform selection

12

Phase Description
1 Integration of core components and basic operation
2 Addition of hypervisor support using upstream supported hypervisor (Xen)
3 Creation of TEE Proxy
4 Further investigation of TEE tunnel and documenting of the process

Reference Platform Selection279

A critical part of integrating the OP-TEE functionality into Apertis is providing280

a working implementation on a reference platform to validate the integrated281

components and serve as an example for Apertis users. This enables them to282

experiment with and learn about the capabilities, so that they can implement283

OP-TEE successfully in their own systems.284

To do this Apertis needs a reference platform that provides existing open source285

support, or one which would require minimal work to implement the required286

support. In this instance we need a platform that supports OP-TEE and the287

chosen hypervisor. In order for the TEE environment to be truly useful, it288

is necessary that guarantees can be made that the boot process hasn’t been289

tampered with. As a result, a platform where we can also integrate secure boot290

effectively will be valuable.291

The existing Apertis reference platforms do not fully meet these requirements.292

The OP-TEE project is specifically targeted towards the ARM ecosystem and293

particularly those that provide ARM TrustZone. ARM TrustZone has been294

improved in later iterations of the technology and standardized with a refer-295

ence implementation, available as part of the ATF project, for using TEEs. We296

recommend that a platform that is capable of utilizing ATF is chosen for this297

reference. An advantage of implementing the TEE using ATF is that this pro-298

vides a standardized interface for the trusted OS and thus allows Apertis to299

potentially be used with alternative trusted OS implementations. Whilst the300

Renesas R-Car platform, an existing reference platform, appears to have OP-301

TEE support20, it is not openly available and therefore not viable for Apertis302

to use as a reference for this functionality.303

There are a limited number of ARM based processors, and thus development304

boards, that are listed as having Xen support21. Two platforms that stand out305

as potential options at this point are the 96 Boards HiKey96022 and a board306

based on the Rockchip RK3399.307

20https://optee.readthedocs.io/en/latest/general/platforms.html
21https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions#

Hardware
22https://www.96boards.org/product/hikey960/

13

https://optee.readthedocs.io/en/latest/general/platforms.html
https://optee.readthedocs.io/en/latest/general/platforms.html
https://optee.readthedocs.io/en/latest/general/platforms.html
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions#Hardware
https://www.96boards.org/product/hikey960/
https://optee.readthedocs.io/en/latest/general/platforms.html
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions#Hardware
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions#Hardware
https://www.96boards.org/product/hikey960/

Core components308

The following core components would need integrating or work in order to pro-309

vide basic operation of OP-TEE.310

Secure Boot311

Secure boot provides an initial important step in initialization of the TEE by312

ensuring that the initialization process is able to proceed without interference.313

Unfortunately this fundamental step is very platform dependent and can not314

be solved as a general case. Apertis has already taken steps to document and315

demonstrate secure boot23. At the moment, Apertis only ships some support316

for secure on the SABRE Lite platform. This provides a good reference for the317

overall process but, unfortunately, the SABRE Lite is not a good choice as a318

technology demonstrator for TEE due to its age.319

We advise the implementation of a TEE demonstrator on a more modern plat-320

form, utilizing ATF, to take advantage of the more advanced functionality found321

in such platforms.322

In addition to the board verifying the initial binaries that are executed, it is323

important that the verification of binaries continues through the boot process324

in order to build a chain of trust24 so that later stages can determine whether325

boot was carried out appropriately.326

ARM Trusted Firmware327

The current ARM Trusted Firmware package in Debian does not build for any328

platforms currently supported in Apertis. The package will need to be tweaked329

to sign the ATF binaries using an Apertis key. In order to support ATF in330

Apertis, one of the following options will need to be taken:331

• Adopt a platform already supported by the build as an additional platform332

in Apertis333

• Enable support for a platform supported by ATF but not currently built334

by the deb packaging335

• Add support for a preferred platform to ATF and enable it in the packag-336

ing337

From the perspective of enabling ATF, these are broadly in order of effort,338

though clearly adding an additional platform to Apertis increases the effort for339

ongoing baseline maintenance.340

Requirements341

23https://em.pages.apertis.org/apertis-website/architecture/secure-boot/
24https://en.wikipedia.org/wiki/Chain_of_trust

14

https://em.pages.apertis.org/apertis-website/architecture/secure-boot/
https://em.pages.apertis.org/apertis-website/architecture/secure-boot/
https://em.pages.apertis.org/apertis-website/architecture/secure-boot/
https://en.wikipedia.org/wiki/Chain_of_trust
https://em.pages.apertis.org/apertis-website/architecture/secure-boot/
https://en.wikipedia.org/wiki/Chain_of_trust

In order to implement Trusted Board Boot25 it will be necessary to upgrade342

mbedtls. This functionality is likely to be considered critical by project develop-343

ers.344

OP-TEE OS345

The OP-TEE project provides the OP-TEE OS26 as the trusted OS that runs346

in the TEE. This is not currently packaged for Debian and it would need to be347

to incorporated into Apertis. Like ATF, an Apertis key will need to be used to348

sign the binaries intended for the TEE to ensure the chain of trust. Currently349

when OP-TEE is built, it embeds the public key that will be used for verifying350

TAs. As with the key/keys used in other steps of this process, in order to ensure351

that products are properly secured, it would be necessary for product teams to352

at a minimum replace the key used with a product specific one. A product team353

may wish to modify OP-TEE to support alternative key management solutions,354

this is expected by the OP-TEE developers27.355

In addition to the trusted OS, the build of the OP-TEE OS source also builds356

the TA-devkit. The TA-devkit provides the resources necessary to both build357

and sign TAs. The TA-devkit will need to be packaged so that it can be provided358

as a build dependency for any TAs.359

Linux Kernel360

Debian (and thus the Apertis configuration) does already enable the TEE sub-361

system on arm64 where ATF can be used. It is understood that this should be362

sufficient and thus no extra modifications to the kernel will be required.363

OP-TEE Supplicant and User Space Libraries364

In addition to the trusted OS, the OP-TEE project provides the OP-TEE sup-365

plicant and TEE Client API28. The supplicant provides services to OP-TEE366

that it does not directly provide itself and the TEE Client API provides a user367

space API in the REE to communicate with the TEE. As with the OP-TEE368

OS, these components are currently not packaged for Debian and would need369

to be. As these components run in the REE they don’t need to be signed.370

Sample TAs371

The example TAs29 should be packaged so that they can be easily installed on372

an Apertis. This will enable early investigation of TEEs on Apertis, enabling373

developers to gain experience with using the TEE. It will provide an example of374

how to best package TAs for use on Apertis based systems. Depending on the375

25https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
26https://github.com/OP-TEE/optee_os
27https://github.com/OP-TEE/optee_os/issues/2233#issuecomment-379253182
28https://github.com/OP-TEE/optee_client
29https://github.com/linaro-swg/optee_examples

15

https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os/issues/2233#issuecomment-379253182
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_client
https://github.com/linaro-swg/optee_examples
https://trustedfirmware-a.readthedocs.io/en/latest/design/trusted-board-boot.html
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os/issues/2233#issuecomment-379253182
https://github.com/OP-TEE/optee_client
https://github.com/linaro-swg/optee_examples

task that developers wish to solve using the TEE, these examples may either376

fulfill or provide a framework for development of the TEE requirements. For377

example, the examples show how to implement secure storage, implement tee-378

supplicant plugins and use a TA to perform encryption and decryption.379

The sample TAs will be signed with the key provided by the Apertis TA-devkit380

package (which will be a build dependency) and thus will be usable with the381

OP-TEE OS built for Apertis.382

Debos Scripting383

Once components are added to the Apertis project, we need a way to combine384

them into an image that can be booted on the target platform. In Apertis385

this is performed by Debos using configuration files to determine exactly what386

packages are added to each image. This also allows for the images to be built387

automatically and regularly using the latest versions of packages. A special388

image to automate configuration of the boot process can also be generated like389

the one provided to update the U-Boot bootloader for the i.MX6 SABRE Lite390

board30.391

Hypervisor Integration392

Hypervisors come in a number of different types, the main 2 classifications of393

hypervisor are called “type 1” and “type 2”. Type 1 hypervisors run on bare394

metal, where as type 2 run on top of a host operating system.395

Apertis supports the use of VirtualBox31 for running the Apertis SDK, however396

this is not intended (nor possible in many instances) to be run on target hard-397

ware and is very much a type 2 hypervisor. Apertis also has the Linux KVM398

enabled which turns the Linux kernel into a hypervisor. KVM is not a clear cut399

type 1 or type 2 hypervisor.400

We’d expect a product to utilize a type 1 hypervisor such as the open source401

Xen hypervisor, which contains the experimental TEE mediator. We therefore402

suggest utilizing this in Apertis to avoid needing to implement TEE mediator403

support in a different hypervisor at this point.404

Xen Hypervisor405

The Xen hypervisor is a GPL-2 licensed type 1 hypervisor. It is supported on406

Intel and ARM architectures and has the experimental TEE mediator. Xen is407

packaged for Debian on the amd64, arm64 and armhf architectures which will ease408

adding support to Apertis, though some work is expected to ensure that the409

version of Xen and the version of the kernel used in Apertis are compatible.410

30https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev2/mx6qsabrelite-uboot-installer.yaml

31https://em.pages.apertis.org/apertis-website/guides/virtualbox/

16

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://em.pages.apertis.org/apertis-website/guides/virtualbox/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev2/mx6qsabrelite-uboot-installer.yaml
https://em.pages.apertis.org/apertis-website/guides/virtualbox/

As previously mentioned, the TEE mediator support is still considered exper-411

imental. It is understood that this functionality has been tested on the Rene-412

sas R-Car H3 platform. Unfortunately this platform requires components that413

aren’t openly available and thus does not present a good reference platform414

for Apertis. Some effort may be required to port this functionality to another415

platform.416

If there is a wish to support hardware access, significant effort may be required417

to move the state of art forward.418

Linux Kernel419

It will be necessary to ensure that the required support is enabled in the Apertis420

kernel builds, however this should be a relatively straight forward task as the421

required configuration options are documented on the Xen website32.422

Dual configuration build of OP-TEE423

Enabling the virtualization support in OP-TEE results in a version of OP-TEE424

that only works in virtualized environments. In order to continue to support425

simple and more complex configurations using a hypervisor it will be necessary426

to build and package at least two versions of OP-TEE, one supporting virtual-427

ization and one that doesn’t.428

TEE Proxy429

The concept of a TEE Proxy appears to be new and no existing such projects430

have yet been found. The implementation of the TEE Proxy will need careful431

consideration of the potential security implications. The environment in which432

the TEE Proxy executes will also need to be trusted and will need to be care-433

fully secured to minimize the risk that third parties could gain access to the434

communications between the TEE Proxy and it’s client or the TEE Proxy and435

the TEE it’s self. The TEE Proxy will also need to be protected against direct436

attacks against the proxy it’s self.437

Low Impact Hypervisor Support438

The main deliverable from the completion of the low impact hypervisor support439

effort should be documentation describing in as generic a way as possible the440

minimal support required from a hypervisor to enable TEE support. This will441

require a good understanding of the underlying mechanisms used by hypervisors442

as well as communication between the TEE and REE. We would expect this443

to be carried out after basic and Xen hypervisor support had been added to444

Apertis, providing the Apertis team with some of the required experience to445

formulate this documentation.446

32https://wiki.xenproject.org/wiki/Mainline_Linux_Kernel_Configs

17

https://wiki.xenproject.org/wiki/Mainline_Linux_Kernel_Configs
https://wiki.xenproject.org/wiki/Mainline_Linux_Kernel_Configs

In order to ensure that this document is accurate and the requirements well447

under understood, it will be necessary to implement the low impact hypervisor448

support in a hypervisor. This could be achieved by using Xen or by implement-449

ing such support for the KVM hypervisor.450

Test Integration451

The availability of a test suite33 test suite provides some coverage of the OP-TEE452

functionality with minimal effort as this should be usable from automated test-453

ing. The test suite should also enable developers to easily gain some confidence454

that OP-TEE was installed and initialized correctly. Whilst not something that455

the Apertis project will utilize (due to it being proprietary), the availability of456

an extended test suite34, which can be purchased from GlobalPlatform may457

be something that users of Apertis may wish to consider to provide extended458

testing.459

In addition to the test suite, OP-TEE provides a benchmark framework35, which460

may be beneficial to product teams with a desire or need to track execution461

performance to ensure that product requirements are being met.462

Whilst the test suite will test operation of OP-TEE itself, an important part of463

initializing a TEE is the platform specific secure boot. Unless using a platform464

very closely aligned with an Apertis reference platform, this step will be the465

responsibility of the product team.466

To ensure that this is properly implemented, tests could be developed that467

attempt to utilize incorrectly signed binaries at the different stages of the boot468

process to ensure that each step is properly validated, providing a reference for469

how to test secure boot.470

Experience with the SABRE Lite has shown that whilst devices may be set up471

to emulate a secured configuration, their behavior differs from the behavior of472

devices locked via its embedded fuses. Since boards locked in a secure boot con-473

figuration no longer allow some operations, they become less useful for general474

development. For this reason, a dedicated set of boards locked via fuses may be475

required to fully test that secure boot restrictions are being enforced.476

33https://github.com/OP-TEE/optee_test
34https://optee.readthedocs.io/en/latest/building/gits/optee_test.html#extended-test-

globalplatform-tests
35https://optee.readthedocs.io/en/latest/building/gits/optee_benchmark.html

18

https://github.com/OP-TEE/optee_test
https://optee.readthedocs.io/en/latest/building/gits/optee_test.html#extended-test-globalplatform-tests
https://optee.readthedocs.io/en/latest/building/gits/optee_benchmark.html
https://github.com/OP-TEE/optee_test
https://optee.readthedocs.io/en/latest/building/gits/optee_test.html#extended-test-globalplatform-tests
https://optee.readthedocs.io/en/latest/building/gits/optee_test.html#extended-test-globalplatform-tests
https://optee.readthedocs.io/en/latest/building/gits/optee_benchmark.html

	System Architecture
	Boot Process
	Trusted Applications
	Virtualization Support
	Container Support

	Advanced topology support
	Proxying TEE Access
	Low impact hypervisor support for TEE

	Enabling TEE in Apertis
	Reference Platform Selection
	Core components
	Secure Boot
	ARM Trusted Firmware
	OP-TEE OS
	Linux Kernel
	OP-TEE Supplicant and User Space Libraries
	Sample TAs
	Debos Scripting

	Hypervisor Integration
	Xen Hypervisor
	Linux Kernel
	Dual configuration build of OP-TEE

	TEE Proxy
	Low Impact Hypervisor Support

	Test Integration

