
Global search

Contents1

Information Classification . 22

Information Sources . 23

Content Categories . 24

Content Flags . 35

Auxiliary Information . 46

Search Priority . 57

Speech Recognition . 58

Guidelines . 69

Decentralized Indexing . 610

Extendable Via Plug-ins . 611

Easy for Application Developers 712

Highly Responsive . 813

Limited System Impact . 914

Predictable Interaction . 915

Balance of Configuration and Heuristics 916

Potential Search Back-ends . 1017

Primary Sources . 1018

Auxiliary Sources . 1219

The SDK Persistence API . 1220

Example Search Flow . 1321

Implementation Examples . 1522

Applications . 1623

Preferences . 1624

Documents . 1625

Media . 1626

Contacts . 1627

Events . 1728

Communications . 1729

Definitions . 1730

Locations . 1831

Using Existing Global Search Software 1832

New Software Development . 1933

Apertis will store several types of information – media files, documents, contacts,34

e-mails, applications and their preferences, chat logs, and more. Much of this35

content will be stored with the application that generates or consumes it. A file36

manager would be very cumbersome for finding content in all these locations,37

and some of these data types are not strictly files. A powerful search system38

needs to be implemented to facilitate convenient access to the user’s data.39

Not all interesting information is locally stored. Apertis may be equipped with40

an internet connection and the user may want their search to include videos on41

YouTube or text from Wikipedia.42

If a GPS device is present, search results could potentially include nearby points43

of interest like gas stations, coffee shops and museums.44

2

Compiling and displaying search results from these varied sources is only a45

partial solution. The interface should also allow interaction with the content –46

by launching an appropriate handling application.47

The goal of this document is to define global search in the context of Apertis48

and establish guidelines for implementing an effective global search system.49

Information Classification50

Information Sources51

There are two types of information sources available to Apertis for searching.52

• Primary – Sources that are used in the generation of search results.53

• Auxiliary – meta-information sources for providing further detail about a54

primary search result.55

The source types can be further broken down into three storage locations:56

• Internal – data stored directly in the embedded Apertis device.57

• External – data stored on a removable device. External devices can be58

removed and have their data altered elsewhere, so care must be taken59

when caching results.60

• Remote – data available from the internet. Availability depends on61

whether the Apertis device has network access, user preferences governing62

network use, and the status of the remote service.63

Content Categories64

The results returned from primary sources may be divided into broad categories:65

• Applications – Installed applications, applications in the currently running66

application stack, and perhaps software available from the application67

store.68

• Preferences – Application or global UI settings.69

• Documents – Spreadsheets, presentations and word processor files. Web70

pages, including the web browser’s bookmarks, would also fall in this71

category.72

• Media – Photos, videos and music. This could also include radio stations,73

both broadcast and internet.74

• Contacts – E-mail, phone and chat contacts.75

• Events – Important dates from a calendar application or social media sites.76

• Communications - Emails, SMS and conversation logs from chat services.77

• Definitions – Dictionary entries and Wikipedia articles.78

3

• Locations – Points of interest from the navigation software and the current79

location.80

Applications should provide a list of categories that apply to the content they81

handle to allow the search framework to make intelligent decisions regarding the82

scope of a search.83

It is likely that some applications will want to extend the available set of cat-84

egories by providing new categories in their manifests. Collabora recommends85

that developers wanting to add a new category are required to be approved by86

the application store.87

Allowing developers to specify their own content categories would reduce the88

search front-end’s ability to combine and prioritize similar results if applications89

chose different category names that mean the same thing. The application store90

would be able to approve or deny any request for a new category, and suggest91

re-use of an existing category if appropriate.92

Even the list above isn’t completely orthogonal – definitions could be a subset93

of documents. Special cases like this should only be considered if it’s deemed94

that a clear benefit arises from the separation.95

Content Flags96

Search results can contain additional Boolean properties that may apply to all97

categories. Collabora recommends a collection of flags to further qualify search98

results in order to allow better sorting and presentation:99

• Favorite – content with this tag has been selected by the user as high100

priority – favorite radio stations, contacts, e-mail threads.101

• Online – Activating some search results – such as browser bookmarks102

– would require a data connection.103

• Fee – The result leads to a service with a fee for usage. Examples could104

include long distance phone calls, or application store software.105

As with content categories, it may be useful to allow applications to specify new106

flags in their manifests. The same concerns apply here as for categories, and107

the application store should carefully consider which new flags are allowed.108

Auxiliary Information109

In many cases, auxiliary data can be added to the search results either to provide110

useful information to the user, or to assist the search manager in prioritizing111

results more effectively:112

• Frequency/recency of usage is useful for prioritizing search results.113

• Presence information can be provided for contacts in search results.114

4

• Thumbnails can be generated for local media.115

• Weather can be provided for locations (with the current location either116

settable as a preference, or taken from a GPS device)117

• Distance from current location can be determined for locations – linear118

distance can be determined quickly, but a driving distance would take119

significantly longer.120

• More advanced auxiliary information providers could look up movie rat-121

ings and reviews from online services.122

In some cases, such as presence information for contacts, the auxiliary infor-123

mation is provided by the same library (libfolks) and at the same time as the124

primary results. In other cases, the search manager may need to query auxiliary125

data sources as an additional step.126

Unlike flags and categories, auxiliary information can’t be extended by applica-127

tion manifests, since it must be fully understood by the search framework to be128

displayed or utilized for priority calculations.129

It is possible that a system will have multiple sources for the same auxiliary in-130

formation – perhaps a freshly installed system uses Google for querying weather131

information. If a user then installs a third-party weather application, it may be132

capable of providing more accurate forecasts.133

The Google Weather API actually ceased to exist in August of 2012134

and is mentioned only for illustrative purposes.135

Resolving which provider to use in situations like these may be difficult. Some136

possible resolution methods would be:137

• If an application is present on the user’s home screen it will be selected.138

• Most recently installed applications will be selected.139

• The HMI could provide an interface for selecting the preferred provider.140

While HMI intervention is not a preferred option, it may not always be possible141

to infer the user’s preference without assistance.142

Search Priority143

Not all information is of equal importance, and if a search has too large a number144

of matches to display, the higher priority matches should come first. Since there145

are many primary sources with differing response times, the results must be146

prioritized or the fastest responders will dominate the results list.147

Having a few different priority levels to assign the different categories to should148

be sufficient:149

• Top – Contacts and recently or frequently used items of all categories.150

5

• High – Media, Documents and nearby locations.151

• Medium – Applications and application settings.152

• Low – E-mails, chat logs and SMS contents.153

• Bottom – Pay-for-use services.154

Within priority levels, information can be sorted with auxiliary information.155

For locations, distance from current location could be a reasonable sort criteria.156

For applications, the most recently used applications should likely be higher up157

the list.158

Speech Recognition159

Hands free operation is a necessity in an automotive user interface, and the160

global search interface needs to be implemented with that as a primary goal.161

Entering arbitrary words, and having the search framework update a list of162

results while a request is being entered isn’t possible with speech recognition.163

The search framework needs to be designed to be accessed comfortably in two164

different input modalities. By providing two search methods – a full search,165

and a simplified keyword search, the same powerful search mechanisms can be166

accessed easily by either voice or entered text.167

The use of keywords for initiating and filtering searches will simplify verbal168

interaction with the system and provide a fast and efficient interface. Category169

names could also be recognized, allowing a quick interface to recently used items.170

Applications should provide a list of keywords in their manifests to indicate the171

set of keywords they may return in their search results. Allowing applications to172

add new keywords from their manifests is likely less problematic for the search173

interface than new categories or flags, and as such needs little or no application174

store review. However, localization of category names and keywords is critical,175

since Apertis may be deployed in multiple languages.176

It may be worthwhile to hard code some response logic, such as “weather”177

launching the preferred weather application, or having a short phrase like178

“switch to <name of local radio station>” control the radio.179

It would be simpler to do this than to try to fine tune the search system’s180

heuristics to cause this to naturally occur, and would prevent installation of a181

new application (which might share keywords with installed applications) from182

changing expected behavior.183

Guidelines184

Collabora feels the following features will help create a responsive, flexible and185

convenient global search interface.186

6

Decentralized Indexing187

Trying to store all these different types of data in a single central repository for188

searching presents some difficult problems:189

• If the on-disk format of the search database changes, a lengthy re-indexing190

of all searchable content must take place.191

• Remote content has dramatically different requirements than local con-192

tent, and may change or disappear.193

• If an application’s data is already in a conveniently searchable form, stor-194

ing a second copy of it in a database wastes storage space, cache memory,195

processing time, and, potentially, decreases user interface responsiveness.196

Apertis has special considerations as well – the application rollback system also197

governs the settings and data associated with an application. If a rollback is198

performed, data in a central database would have to be purged and re-created.199

Separating the search front-end from the database and allowing it to query multi-200

ple sources for results will allow the use of many different available components,201

allow searching remote content that can’t be indexed, and allow for search back-202

ends with different search strategies and response times to be compiled into a203

single result list.204

Extendable Via Plug-ins205

Many desktop search applications aggregate data from several back-ends to206

produce their search results. Each source has a plug-in specifically written to207

process a certain kind of data and return standardized search results.208

Using existing global search software provides details on some exist-209

ing global search solutions.210

Allowing applications to be responsible for providing search results on their own211

data enables them to provide more appropriate results than if a general purpose212

service naively indexed everything on the system.213

Applications would be able to provide their own plug-in, which may commu-214

nicate with an application agent, to create a custom search back end for the215

application’s content.216

Agents are described in the Software agents in Apertis document217

Further, application search databases can be stored with the rest of the appli-218

cation data in a way that allows application rollback to govern them as well, so219

in the event of an application rollback search results will still be consistent with220

the data and no lengthy re-indexing process will be required.221

Some back-end plug-ins may be capable of prioritizing their results. These222

priorities should be normalized for fair comparison across plug-ins, and then223

used by the front end to sort results within priority levels.224

7

Easy for Application Developers225

Many applications will work with data that should be exposed via the search226

interface, but if integrating an application with global search is difficult then227

developers may do it poorly or not do it at all.228

For applications using the Apertis persistence framework to store data, it may be229

possible to have a single search plug-in that can mine the persistence framework230

to produce results for multiple applications.231

Since the applications are responsible for the structure of their data in the232

persistence framework, it’s difficult for a generic plug-in to guess what data233

should be searchable. Applications may store sensitive information, such as234

passwords, in the framework as well.235

Another difficult problem is that the plug-in should be able to track which236

results were selected in order to increase their priority in future searches, but237

this is difficult to maintain separately from the searchable data.238

The following criteria simplify the implementation of a generic plug-in for mining239

the persistence framework:240

• The persistence framework allows applications to create special tables for241

searchable data.242

• Only the contents of these tables are searchable.243

• The format for searchable data is dictated by the persistence framework244

and contains extra fields for use by the plug-in for gathering statistics.245

• The application manifest indicates whether the plug-in can search an ap-246

plication’s data – even if the application uses the searchable data format,247

it may still provide its own search plug-in, and not wish to have its results248

duplicated by the generic plug-in.249

In addition to allowing applications to intentionally expose data to the search250

framework, if the SDK provides functionality for an application to maintain a251

list of recently used items in a standard way, a generic plug-in could use that252

information to provide search results.253

Activation of these search results must invoke the application in a way that the254

appropriate data is immediately displayed. The application manager and the255

application will have to negotiate this launch.256

Searching the persistence API’s storage is covered further in The SDK persis-257

tence API.258

Highly Responsive259

Users will expect new search results to be presented as they type, with the result260

list becoming more refined the more text they enter. It is important that the261

text entry always feel responsive, even if the results are slightly delayed.262

8

Search results may take a noticeable amount of time to accumulate. Local263

results should arrive quickly, but remote results could take seconds. Waiting264

for all results to be available before presenting any to the user would result in265

a disappointing experience.266

In order to avoid penalizing fast responders to wait for the slowest plug-ins to267

finish their queries, search results should be displayed to the user promptly as268

they become available.269

Asynchronous coupling between primary and auxiliary is also important. If a270

search returns a contact, the user may intend to send an email or place a call to271

that contact immediately – waiting for online status before showing that search272

result at all might give the impression that the search system is slow.273

An indication that search results are still being accumulated should be presented274

to the user, as slow responding back-ends may take a significant amount of time275

to finish, and a user may choose to wait for more search results if they know276

more may become available.277

It may be preferable to delay querying slow, online, or resource heavy search278

result providers until the user signifies the end of text interaction in some way.279

A quickly accumulated subset of potential search results could be displayed280

during text entry with a full search only conducted if they hit “enter” instead281

of selecting a result.282

This would prevent sending off a large number of resource intensive requests for283

every entered character during the time when they’re likely to be immediately284

invalidated by more input.285

Limited System Impact286

If the search framework immediately responded to a search request by sending287

requests to all available plug-ins concurrently, the resulting spike in I/O and288

memory consumption would likely have detrimental effects on system interac-289

tivity. If the search results in significant storage device access, useful data will290

be pushed from system caches resulting in a generally sluggish system for a291

while after a search takes place.292

Efforts should be made to do the minimal amount of searching possible to satisfy293

the user’s request. Since applications are required to specify in their manifests294

what categories and keywords apply to their data, a keyword based search only295

needs to access a subset of search plug-ins.296

Starting with a “shallow” search and allowing a progressively deeper search297

(perhaps by touching a “more results” button, or by speaking the word “more”)298

will allow the search manager to query high priority plug-ins first, and only299

query lower priority plug-ins if the user is dissatisfied with the search results.300

The initial search will prefer plug-ins for applications on the home screen and301

applications that are already running, as well as higher priority search content,302

9

with subsequently “deeper” searches progressing to lower priority levels.303

As the user performs searches and the system accumulates more information304

on what plug-ins are most likely to provide the results they choose, the “more305

results” function will be used less and less frequently.306

Predictable Interaction307

Rapid changes in already visible search results could result in the user selecting308

an unintended item. Care should be taken to minimize movement of search309

results after display.310

Results should be displayed in sorted order, not displayed and then sorted. As311

new items are added they may change the position of existing items – new high312

priority results will push lower priority results down the list.313

Aggressive timeouts may need to be set for online sources to help mitigate this.314

Search results from online sources could be given a shared timeout, at which315

point the results will be ordered and injected into the displayed list all at once.316

If the result list can be navigated with up/down buttons or a similar physical317

interface then the selection should stay with the currently selected item if new318

results appear. If the selection stays with the ordinal position in the list, then319

an unintentional activation is much more likely to occur.320

Balance of Configuration and Heuristics321

Exposing preferences to control all aspects of the search process will almost322

certainly confuse more users than it will help. Trying to represent all the possible323

combinations of flags to the user in a sensible way will likely not be possible.324

The ability to turn individual search sources on and off is probably useful, and325

this is the way search configuration is presented on some operating systems326

(OSX, Android).327

If the interface is too configurable it makes testing new search heuristics more328

difficult, as they need to be tested for interactions with all possible combinations329

of the available settings. Giving the user control over what is searched, but not330

how it’s presented, should allow some user customization while maintaining331

consistency for developers.332

The system should track a user’s search history and use that information to333

change the priority levels of content categories, and the effect of content flags.334

This will allow the system to adapt to a user’s preferences over time. Since335

applications can add new content categories, flags, and keywords this will also336

allow these new types to eventually find the priority level that matches the users337

interest In them.338

Some system settings should affect the search system. If Apertis is equipped339

with a wireless modem, the search system should obey the system settings for340

wireless data usage. It might be useful to allow finer grained control over remote341

10

searching. Back-ends that require network traffic to perform a search could be342

presented as a single result (like: “Search Wikipedia for: …”). Activating that343

result would perform the remote search and replace the single line with the new344

results as they become available.345

Potential Search Back-ends346

A significant body of search software already exists and would be appropriate to347

integrate into a global search framework; some convenient libraries and protocols348

exist for quickly creating new search back-ends.349

The following sections provide an overview of some potential primary and aux-350

iliary sources. For some of them indexing services are already available, others351

don’t yet have a free implementation or are Apertis specific.352

New software development later in this document is intended to353

give an overview of what suggested components would require new354

software development.355

Primary Sources356

The following software solutions bear strong consideration for inclusion as pri-357

mary search backends:358

• Zeitgeist1 - An activity logger that tracks frequently used content as well359

as chat logs. While it’s possible for individual apps to track recently used360

data, Zeitgeist can track this data on a whole system level.361

• Evolution-data-server2 - A component allowing access to calendar, tasks,362

and address book information.363

• Folks3 - A “meta-contact” aggregator that can return information for con-364

tacts across a wide array of services (including Evolution-data-server’s365

contact information).366

• Grilo4 - A framework for browsing remote media.367

New search backends could readily be built from:368

• OpenSearch5 - A standard for internet based searching implemented by369

many existing searchable pages – Wikipedia, Google, Bing, and IMDb to370

name a few.371

• Lucene++6 - A generic text search engine that can be used in applications372

that want to implement their own search back-ends.373

1https://zeitgeist.freedesktop.org/
2https://wiki.gnome.org/Apps/Evolution/EDS_Architecture
3https://wiki.gnome.org/Projects/Folks
4https://wiki.gnome.org/Projects/Grilo
5http://www.opensearch.org/
6https://github.com/luceneplusplus/LucenePlusPlus

11

https://zeitgeist.freedesktop.org/
https://wiki.gnome.org/Apps/Evolution/EDS_Architecture
https://wiki.gnome.org/Projects/Folks
https://wiki.gnome.org/Projects/Grilo
http://www.opensearch.org/
https://github.com/luceneplusplus/LucenePlusPlus
https://zeitgeist.freedesktop.org/
https://wiki.gnome.org/Apps/Evolution/EDS_Architecture
https://wiki.gnome.org/Projects/Folks
https://wiki.gnome.org/Projects/Grilo
http://www.opensearch.org/
https://github.com/luceneplusplus/LucenePlusPlus

Some Apertis specific systems are good candidates for delivering search results:374

• Application Manager – The application manager could provide search for375

installed applications, and perhaps even allow searching running applica-376

tions to allow a quick jump to recently used applications on the application377

stack.378

• Preference Manager – The preference manager has access to all application379

and global UI settings, and could provide these settings to the search380

framework.381

• Browser – The browser application’s bookmark list should exposed by the382

search infrastructure.383

There may be times when more than one primary search source returns the384

same result - the Zeitgeist activity logger, for instance, tracks recently used385

content. Recently played media may be returned as a search result from both386

Zeitgeist and a media indexing service. When such a collision occurs, the two387

results should be combined (before consulting auxiliary sources) and displayed388

as a single search result.389

Some care will need to be taken in selecting how the plug-ins query results.390

For example, the application and preference managers could be queried over391

D-bus since they’re likely to be long running services. The search plug-in for392

browser bookmarks should directly query the bookmark database, as it would393

be undesirable to launch an instance of the browser to service a search request.394

Auxiliary Sources395

Once a result is provided, useful additional information can be added by auxil-396

iary sources:397

• Tumbler can provide thumbnails for documents and media398

• Plugins can offer related searches, eg. songs by the same artist or in the399

same album, similar songs, places near a location,400

• On-line services could be used to retrieve album art, lyrics, or movie plot401

synopses.402

The SDK Persistence API403

The SDK will provide a persistence API to applications – as this API can be used404

to store recently used or favorite items. The SDK Persistence will also provide405

a plugin for the global search infrastructure, to provide useful information as406

both a primary and an auxiliary source.407

Several types of data could potentially be managed by the SDK persistence API:408

• Favorite lists - items the user has declared to be important.409

12

• Recently used lists – items the user has interacted with recently. This is410

a convenience API to information stored in Zeitgeist411

• Application-specific data – anything an application wants exposed to the412

search framework.413

Data should be stored in such a way that the search result can be easily passed414

to the appropriate application for launching. One possible set of data for an415

item stored by the persistence API would be:416

• The information classification (as in Information classification) for the417

stored item.418

• The name of the item – the name of the web page a bookmark refers to,419

name of a radio station, etc. This is what will be shown as the search420

result.421

• A reference to the activatable item - a local file name, a URL, or other422

relevant data that would be passed to the application to activate it.423

• The time of the last usage of this piece of data (see following comments).424

• Potentially some simple keywords so proprietary data can be better inte-425

grated with search.426

• Any additional information the application wishes to attach to this item427

- unused by the search system.428

• Any additional information used by the search subsystem, not modifiable429

by the application itself. For example, the original plugin that provided430

the item.431

In practice there are several ways to decide if an item is recently used. An432

application could track the last 5 documents it has been required to open, or a433

web browser could track all sites it has visited in the last 2 weeks.434

Examples of favorites and recent used items for common applications435

Application Favorite Recent used items
Web browser Bookmarks History
Navigation Favorite places Last destinations
Radio Station list Last station
Weather Favorite locations Last location
Contacts Favorite contacts Last contacts called or messaged (sent or received)
Documents Files in ~/Documents Last opened documents
Media player Playlists Last played
Calendar Next events Last opened event

It is recommended that regardless of the methods of determining recency, a date436

of last usage is stored in the persistence framework for searchable items. This437

13

will allow the search system to fairly prioritize results from different applications.438

Application-specific data presents a rather big challenge to the search frame-439

work, both in terms of implementation and UI design. While some application440

concepts can be represented in intuitive ways by a generic search interface, that441

will be the exception rather than the rule. Therefore, Collabora recommends442

that search be limited to item names and keywords that the application may443

associate with the name. More complex searches, such as searching for music444

that is above a given media rating, should be available in the application itself,445

otherwise the general search will be too complex to use and implement.446

Example Search Flow447

A search begins in the HMI, either by voice recognition or by in-448

teraction with the touch screen. Before any lengthy search is per-449

formed, hard coded response logic is checked for simple responses such450

as changing the radio station or checking the weather at the current loca-451

14

tion.452

If this logic completes the search, the appropriate action is taken and the in-453

terface is dismissed. If there is no user selection within a configurable time,454

the search engine begins performing queries of the back end plug-ins, starting455

with the highest priority information categories (static data content), including456

auxiliary information.457

As search results are accumulated and displayed, the user is able to either select458

15

from the presented results, or request that the search engine try lower priority459

(and potentially slower) content types to satisfy the request (dynamic data).460

It’s not unlikely that a single plug-in can return results of different content461

types – the application manager’s plug-in, for example, may return applications462

as well as application preferences. The search system must be able to tell the463

plug-ins that it is currently only interested in a subset of available content types464

to control the returned results.465

The plugins may also suggest related search items, eg. Similar songs, songs by466

the same artist, places near a location. The UI will display these related items467

as a subitem. If selected, the search engine will initiate a new search with the468

selected condition, and the search will start over.469

Once the user selects an appropriate result, the appropriate action should be470

taken (Some examples are: launching an application or changing the radio sta-471

tion). The search framework should use the finally selected search result to472

assist in re-prioritizing plug-ins and categories for future searches.473

Implementation Examples474

It is not the intent of this document to dictate application design decisions,475

such as file formats or storage methods for application data (like bookmarks,476

calendar entries, and contact information.)477

However, this section provides some potential ways to provide search results for478

each of the content types from Content categories and some recommendations479

that may make developing the search system easier.480

Collabora recommends against trying to use Tracker as an indexer for any pro-481

prietary data formats, instead preferring a plug-in for the search framework482

instead.483

If an application changes the format of the data it wants to store, the Tracker484

database would need to be updated for application management operations.485

Tracker’s database is not governed by the application rollback system, so these486

updates would not be reversible.487

Similarly, it would be preferable to avoid using Tracker to mine any new file488

types, or have it index application storage areas other than the general stor-489

age area. Proprietary file types can instead be handled by agents or plug-ins490

provided by the applications that operate on them.491

Since Apertis will not have a file browser, some standard file types (vcards,492

icalendar, GPX) should likely not be stored at all, and instead be consumed493

and deleted by the appropriate application when presented to the device.494

Allowing these formats to be stored, indexed and displayed as search results495

would create confusion when the application responsible for that data type also496

16

returned a similar search result. This problem is explained further in the follow-497

ing sections.498

Applications499

For the purposes of global search, applications can very broadly be separated500

into two groups:501

• Installed – results can be returned by a plug-in that uses the application502

launcher’s database of application manifest to return pertinent results.503

• Available from the store – a plug-in that connects to the application store504

could locate installable applications that match the user’s search.505

Preferences506

The Apertis Application Development document defines a system in which ap-507

plication settings for all applications are managed by a single app-settings ap-508

plication.509

Under such a system, a single plug-in could be written to provide any settings510

managed by the preference manager as search results to the global search front511

end.512

Documents513

Document search results can be provided by several sources:514

• Local documents in standard formats will be returned by the system in-515

dexer.516

• Favorite and recently used files and web pages can be returned by the517

SDK persistence API search plug-in.518

• A plug-in could perform a Google search.519

• Data in proprietary formats could be searched by application specific plug-520

ins.521

Media522

The Media Management Design deals specifically with the handling of media523

content via a combination of Tracker, Tumbler and Grilo.524

Radio station results could be provided by the SDK persistence API. Tracker525

also has an ontology for radio stations, so storing station data there is an option.526

Contacts527

The Contacts design defines an approach to contact management based on a528

libfolks front end. A plug-in using libfolks could be created for the global search529

17

system to provide contacts as search results.530

A file format – vcard (.vcf, .vcard) exists for the exchange of contact information.531

If it’s deemed necessary to index these for some reason, it should be noted that:532

• “Activating” a vcard file generally results in adding a contact to a contact533

database – which is quite likely not what the user is trying to do via the534

search interface.535

• A vcard file may contain a subset of the information available to libfolks,536

and will not remain in sync with it if contact information is updated.537

• Activating the vcard may in fact replace more recently updated informa-538

tion in the contact system with older data.539

As such, a vcard file search result may be hard to distinguish from a contact540

search result, and vcard files should probably not be returned as results at all.541

Events542

Like contacts, calendar events have a standardized file format for passing along543

event data – iCalendar (.icf). Also like contacts, this format is probably only544

used for synchronizing events between devices and is probably not the calendar545

application’s native storage format.546

Like .vcf files, .icf files should probably not be part of the returned search re-547

sults to avoid confusing behavior. Instead, a plug-in that uses the calendar548

applications native storage format could provide these results.549

Depending on application design decisions, a single calendar application might550

not be the only source of searchable “events” - a social media application might551

also provide search results.552

Communications553

The applications responsible for handling phone, SMS, e-mail and instant mes-554

saging data can all be responsible for searching their own logs for providing555

search results.556

A plug-in based on libfolks could provide auxiliary information about the con-557

tacts involved in the communications returned by the primary results providers.558

Definitions559

A Plug-in could search Wiktionary via the OpenSearch API, or a standalone560

dictionary application could provide a plug-in to provide results from its local561

database.562

18

Locations563

Navigation and weather software can provide favorite or recent locations via the564

persistence API’s plug-in.565

A plug-in for the navigation software could allow searching the map data to566

return possible destinations, and a weather plug-in could be queried for current567

conditions at those locations.568

A weather plug-in should probably employ efficient caching, since searching for569

nearby points of interest will almost always return a large number of locations570

in the same weather reporting domain.571

Using Existing Global Search Software572

Many search frameworks already exist, and it may be possible to re-use some573

of their code. Unity lenses7 have been singled out as a particularly interesting574

search architecture.575

The Unity search system consists of 3 pieces:576

• The Dash – the user interface components. These are an integral part of577

the Unity UI, which itself is a plug-in for the compiz window manager.578

• A collection of Lenses – search front ends which pass up result lists to the579

user interface components. Each data type is intended to have its own580

lens.581

• A collection of Scopes – back end plug-ins that return results to front end582

lenses. A lens can pull data from any number of scopes.583

Lenses and Scopes are processes launched via D-bus to service search requests584

– though a lens may have a “local scope” built into it and not require any585

additional scopes. Both components are written in the Vala programming lan-586

guage using libunity, and must have D-bus .service files so they can be demand587

launched by D-bus activation.588

In order to leverage the Unity Lens search infrastructure in Apertis, the front589

end components would have to be re-implemented – or the code from the Unity590

compiz plug-in could be extracted and heavily re-factored to fit within the Aper-591

tis UI.592

The existing code is heavily integrated with Unity, and may be very difficult to593

extract without having to also duplicate a lot of other Unity functionality. It594

may be easier to mimic the dash’s D-bus interfaces instead of trying to fit its595

code into Apertis.596

Since the lens architecture requires the user to select what kind of data they’re597

searching for, in addition to UI for displaying search results, a method of select-598

7https://wiki.ubuntu.com/Unity/Lenses/Guidelines

19

https://wiki.ubuntu.com/Unity/Lenses/Guidelines
https://wiki.ubuntu.com/Unity/Lenses/Guidelines

ing which lens to search with would also be required. In the Unity Dash this is599

known as the “lens bar”.600

A set of Lenses are required, one for each type of searchable data – the list of601

content categories from Content categories would provide a good selection of602

lenses. Some of the lenses already available for Unity might fill these roles.603

Scopes would need to be created for the different data sources – such as a generic604

plug-in for mining the persistence framework. Since the persistence framework605

might contain data that fits different categories, multiple scopes may need to606

be written for it, each presenting only one category of information.607

Multiple scopes can provide results to a single lens, so, for example, a “com-608

munications” lens could have a back-end scope for e-mail, and another for SMS609

messages.610

The lens concept differs slightly from the search paradigm presented earlier in611

this design. Using lenses, the user would have to pick what type of data they612

were searching for by selecting a lens, as opposed to all types of data being613

prioritized and combined in a single list.614

New Software Development615

To implement a global search interface like the one described in this document,616

new software components will need to be created:617

• A plug-in framework for integrating search back-ends, perhaps built on or618

with code re-used from software from Using existing global search software619

A similar plugin framework is also offered by Grilo. Although Grilo is620

focused on multimedia content, the plugin framework could be reused and621

adapted to serve general content, as needed by the SDK Persistence API.622

Also, Grilo is already used within Apertis, avoiding new dependencies.623

• Plug-ins for the framework – many of these will be thin wrappers around624

existing search functionality such as that listed in Potential search back-625

ends, some will be Apertis specific and require more development.626

• A UI for presenting and interacting with search results.627

• Preference management for the search system.628

20

	Information Classification
	Information Sources
	Content Categories
	Content Flags
	Auxiliary Information

	Search Priority
	Speech Recognition
	Guidelines
	Decentralized Indexing
	Extendable Via Plug-ins
	Easy for Application Developers
	Highly Responsive
	Limited System Impact
	Predictable Interaction
	Balance of Configuration and Heuristics

	Potential Search Back-ends
	Primary Sources
	Auxiliary Sources
	The SDK Persistence API

	Example Search Flow
	Implementation Examples
	Applications
	Preferences
	Documents
	Media
	Contacts
	Events
	Communications
	Definitions
	Locations

	Using Existing Global Search Software
	New Software Development

