
Build infrastructure on Intel x86-64

Contents1

Build infrastructure on Intel x86-64 22

Introduction . 23

Why host the whole build infrastructure on Intel x86-64 24

Why OBS workers need a native environment 35

CPU emulation . 36

Using emulation to target foreign architectures from x86-64 47

Mitigating the impact on performance 58

Risks . 59

Limited maturity of the support for cross-builds in OBS 510

Versioning mismatches between emulated and injected native11

components . 612

Impact of performance loss on timing-depended tests 613

Emulation bugs . 614

Approach . 615

Evaluation Report . 716

Build infrastructure on Intel x86-6417

Introduction18

The current Apertis infrastructure is largely made of hosts based on the Intel19

x86-64 architecture, often using virtualized machines.20

The only exceptions are:21

• OBS workers used to build packages natively for the ARM 32 bit and22

ARM 64 bit architectures23

• LAVA workers, which match the reference hardware platforms124

While LAVA workers are by nature meant to be hosted separately from the25

rest of the infrastructure and are handled via geographically distributed LAVA26

dispatchers2, the constraint on the OBS workers is problematic for adopters27

that want to host downstream Apertis infrastructure.28

Why host the whole build infrastructure on Intel x86-6429

Being able to host the build infrastructure solely on Intel x86 64 bit (usually30

referred to as x86-64 or amd64) machines enables downstream Apertis to be hosted31

on a standard public or private cloud solution as these usually only offer x86-6432

machines.33

Deploying the OBS workers on cloud providers would also allow for the imple-34

mentation of elastic workload handling.35

1https://em.pages.apertis.org/apertis-website/reference_hardware/
2https://gitlab.apertis.org/infrastructure/apertis-lava-docker/blob/master/apertis-lava-

dispatcher/README.md

2

https://em.pages.apertis.org/apertis-website/reference_hardware/
https://gitlab.apertis.org/infrastructure/apertis-lava-docker/blob/master/apertis-lava-dispatcher/README.md
https://gitlab.apertis.org/infrastructure/apertis-lava-docker/blob/master/apertis-lava-dispatcher/README.md
https://gitlab.apertis.org/infrastructure/apertis-lava-docker/blob/master/apertis-lava-dispatcher/README.md
https://em.pages.apertis.org/apertis-website/reference_hardware/
https://gitlab.apertis.org/infrastructure/apertis-lava-docker/blob/master/apertis-lava-dispatcher/README.md
https://gitlab.apertis.org/infrastructure/apertis-lava-docker/blob/master/apertis-lava-dispatcher/README.md

Elastic scaling, and the desire to ensure that the cloud approach is tested and36

viable for downstreams, means that the deployment approach described in this37

document is of interest for the main Apertis infrastructure, not just for down-38

streams.39

Some cloud providers like Amazon Web Services have recently started offering40

ARM 64 bit servers as well. As a result it should be possible to adopt a hybrid41

approach, mixing foreign builds on x86-64 and native ones on ARM machines.42

In particular, Apertis is currently committed to maintain native workers for all43

the supported architectures, but is aiming for a hybrid set up where foreign44

packages get built on a mix of native and non-native Intel x86 64 bit machines.45

Downstreams will be able to opt for fully native, hybrid or Intel-only OBS46

worker setups.47

Why OBS workers need a native environment48

Development environments for embedded devices often rely on cross-compilation49

to build software targeting a foreign architecture from x86-64 build hosts.50

However, pure cross-compilation prevents running the unit tests that are shipped51

with the projects being built, since the binaries produced do not match that of52

the build machine.53

In addition, supporting cross-compilation across all the projects that compose54

a Linux distribution involves a considerable effort, since not all build systems55

support cross-compilation, and where it is supported some features may still be56

incompatible with it.57

From the point of view of upstream projects, cross-compilation is in generally a58

less tested path, which often leads cross-building distributors to ship a consid-59

erable amount of patches adding fixes and workarounds.60

For this reason all the major package-based distributions like Fedora, Ubuntu,61

SUSE and in particular Debian, the upstream distribution from which Apertis62

sources most of its packages, choose to only officially support native compilation63

for their packages.64

The Debian infrastructure thus hosts machines with different CPU architectures,65

since the build workers must run hardware that matches the architecture of the66

binary packages being built.67

Apertis inherits this requirement, and currently has build workers with Intel 6468

bit, ARM 32 and 64 bit CPUs.69

3

CPU emulation70

Using the right CPU is fortunately not the only way to execute programs for71

non-Intel architectures: the QEMU project3 provides the ability to emulate a72

multitude of platforms on an x86-64 machine.73

QEMU offers two main modes:74

• system mode: emulates a full machine, including the CPU and a set of75

attached hardware devices;76

• user mode: translates CPU instructions on a running Linux system, run-77

ning foreign binaries as if they were native.78

The system mode is useful when running entire operating systems, but it has a79

severe performance impact.80

The user mode has a much lighter impact on performance as it only deals with81

translating the CPU instructions in a Linux executable. For instance, running82

an ARMv7 ELF binary on top of the x86-64 kernel running on a x86-64 host.83

Using emulation to target foreign architectures from x86-6484

The build process on the OBS workers already involves setting up a chroot85

where the actual compilation happens. By combining it with the static variant86

of the QEMU user mode emulator it can be used to build software on a x86-6487

host targeting a foreign architecture as if it were a native build.88

The binfmt_misc4 subsystem in the kernel can be used to make the emulation89

transparent so that emulation happens automatically and transparently when a90

foreign binary is executed. Packages can then be built for foreign architectures91

without any changes.92

The emulation-based compilation is also known as Type 4 cross-build5 in the93

OBS documentation.94

The following diagram shows how the OBS backend can distribute build jobs to95

its workers.96

Each CPU instruction set is marked by the code name used by OBS:97

• x86_64: the Intel x86 64 bit ISA, also known as amd64 in Debian98

• armv7hl: the ARMv7 32 bit Hard Float ISA, also known as armhf in Debian99

• aarch64: the ARMv8 64 bit ISA, also known as arm64 in Debian100

3https://www.qemu.org/
4https://en.wikipedia.org/wiki/Binfmt_misc
5https://en.opensuse.org/openSUSE:Build_Service_Concept_CrossDevelopment#

Types_of_crossbuild

4

https://www.qemu.org/
https://en.wikipedia.org/wiki/Binfmt_misc
https://en.opensuse.org/openSUSE:Build_Service_Concept_CrossDevelopment#Types_of_crossbuild
https://www.qemu.org/
https://en.wikipedia.org/wiki/Binfmt_misc
https://en.opensuse.org/openSUSE:Build_Service_Concept_CrossDevelopment#Types_of_crossbuild
https://en.opensuse.org/openSUSE:Build_Service_Concept_CrossDevelopment#Types_of_crossbuild

OBS backend OBS worker (x86_64

Build chroot
(armv7hl + QEMU)

qemu-arm-static

• • •

build program

Build chroot (x86_64)

• • •

build program

• • •

qemu-arm-static

build program

build program

OBS worker (aarch64)

Build chroot (aarch64)

• • •

build program

• • •

build program

Build chroot (armv7hl)

• • •

build program

build program

OBS worker (armv7hl)

Build chroot (armv7hl)

• • •

build program

• • •

build program

Build chroot (armv7hl)

• • •

build program

build program

ARMv7 32 bit hard-float
host/VM

ARMv8 64 bit
host/VM, with

ARMv7 32 bit support

Intel x86-64
host/VM

101

Particularly relevant here are the armv7hl jobs building ARMv7 32 bit packages102

that can be dispatched to:103

1. the native armv7hl worker machine;104

2. the aarch64 worker machine, which supports the ARMv7 32 bit ISA na-105

tively and thus can run binaries in armv7hl chroots natively;106

3. the x86_64 worker machine, which uses the qemu-arm-static binary transla-107

tor to run binaries in armv7hl chroots via emulation.108

Some ARM 64 bit server systems do not support the ARMv7 32 bit ISA natively,109

and would thus require the same emulation-based approach used on the x86-64110

machines to execute the ARM 32 bit jobs.111

Mitigating the impact on performance112

The most obvious way to handle the performance penalty is to use faster CPUs.113

Cloud providers offer a wide range of options for x86-64 machines, and establish-114

ing the appropriate cost/performance balance is the first step. It is possible that115

the performance of an emulated build on a fast x86-64 CPU may be comparable116

or even faster than a native build on a older ARMv7 machine.117

In addition, compilation is often a largely parallel task:118

1. big software projects like WebKit are made of many compilation units that119

can be built in parallel120

2. during large scale rebuilds each package can be built in parallel121

Even if some phases of the build process do not benefit from multiple cores,122

5

most of the time is spent on processing the compilation units which means that123

increasing the numbers of cores on the worker machines can effectively mitigate124

the slowdown due to emulation on large packages.125

For large scale rebuilds, scaling the number of machines is already helpful, as126

the build process for each package is isolated from the others.127

A different optimization would be to use some selected binaries for the native128

architecture during the qemu-linux-user emulation. For instance, a real cross-129

compiler can be injected in the build chroot and make it pretend to be the130

“native” compiler in the otherwise emulated environment.131

This would give the best possible performance as the compilation is done with132

native x86-64 code, but care has to be taken to ensure that the cross-compiler133

can run reliably in the foreign chroot, and keeping the native and emulated134

versions synchronized can be challenging.135

Risks136

Limited maturity of the support for cross-builds in OBS137

Support for injecting the QEMU static emulator in the OBS build chroot seems138

to be only well tested on RPM-based systems, and there may be some issues139

with the DEB-based approach used by Apertis.140

A feasibility study was done by Collabora in the past demonstrating the viability141

of the approach, but some issues may need to be dealt with to deploy it at scale.142

Versioning mismatches between emulated and injected native com-143

ponents144

If native components are injected in the otherwise emulated cross-build environ-145

ment to mitigate the impact on performance, particular care must be made to146

ensure that the versions match.147

Impact of performance loss on timing-depended tests148

Some unit tests shipped in upstream packages can be very sensitive to timing149

issues, failing on slower machines. If the performance impact is non-trivial, the150

emulated environment may be subject to the same failures.151

However, this is not specific to the emulated environment: Apertis often faces152

this kind of issues where some tests that pass on the main Apertis infrastructure153

fail due to timing issues on the slower workers that downstream distributions154

may use.155

To mitigate the impact on downstream distributors, the flaky tests usually get156

fixed or, if the effort required is too large, disabled.157

6

Emulation bugs158

The emulator may have bugs that may get triggered by the build process of159

some packages.160

Since upstream distributors use native workers those issues may not be caught161

before the triggering package is built on the Apertis infrastructure.162

Debugging this kind of issues is often not trivial.163

Approach164

These are the high level steps to be undertaken to be able to run the whole165

Apertis build infrastructure on x84-64 machines:166

• Set up an OBS test instance with a single x86-64 worker167

• Configure the test instance and worker for armhf and aarch64 emulated168

builds169

• Test a selected set of packages by building them for armhf and aarch64170

• Set up other x86-64 workers and test a rebuild of the whole archive, ensur-171

ing that all the packages can be build from using the emulated approach172

• Devise mitigations in case some packages fail to build in the emulated173

environment174

• Measure and evaluate performance impact comparing build times with175

those on the native workers currently in use in Apertis, to decide whether176

scaling the number of workers is sufficient to compensate the impact177

• Test mitigation approaches over a selected set of packages and evaluate178

the gains179

• Do another rebuild of the whole archive to ensure that the mitigations180

didn’t introduce regressions181

• Refine and deploy the chosen mitigation approaches to, for instance, en-182

sure that the injected native binaries are kept synchronized with the em-183

ulated ones they replace184

There’s a risk that no mitigation end up being effective on some packages so185

they keep failing in the emulated approach. In the short term those packages186

will be required to be built on the native workers in a hybrid set up, but they187

would be more problematic in a hypothetical downstream setup with no native188

workers as they can’t be built there. In that case, pre-built binaries coming189

from an upstream with native workers will have to be injected in the archive.190

Alternatively, it may be possible to mix type 3 and 4 crossbuilds6 by modifying191

the failing packages to make them buildable with a real cross-compiler. This192

solution requires a much higher maintenance cost as packages do not generally193

support being built in that way, but it may be an option to be able to do full194

builds on x86-64 in the few cases where emulation fails.195

6https://en.opensuse.org/openSUSE:Build_Service_Concept_CrossDevelopment#
Types_of_crossbuild

7

https://en.opensuse.org/openSUSE:Build_Service_Concept_CrossDevelopment#Types_of_crossbuild
https://en.opensuse.org/openSUSE:Build_Service_Concept_CrossDevelopment#Types_of_crossbuild
https://en.opensuse.org/openSUSE:Build_Service_Concept_CrossDevelopment#Types_of_crossbuild

Evaluation Report196

A full archive-wide build was run on the Azure Cloud setup, using x86-64 virtual197

machines. A cloud optimized setup was built, comprising of the following major198

components:199

• Azure provided Linux Virtual Machines (Debian Buster)200

• Docker (as provided by the Linux distribution vendor)201

• Linux 4.19 and above202

• binfmt-support203

• QEMU Emulator204

Given the task at hand, to run emulation for ARM architecture on x86-64, we205

chose the following cloud hardware class for our OBS worker setup.206

• OBS-Server VM: Standard DS14 v2 (16 vcpus, 112 GiB memory)207

• Worker VM: Standard F32s_v2 (32 vcpus, 64 GiB memory)208

The provisioned OBS-Server VM hosted all of the OBS services, dockerized to run209

easily and efficiently in a cloud environment. For the workers, we provisioned210

3 Worker VMs, each VM running 5 worker instances per architecture, with 3211

architectures this resulted in a total of 15 worker instances per virtual machine.212

In total, we ran 45 worker instances for our build farm. This includes 30 worker213

instances doing emulated builds, 15 for the 32-bit ARM architecture and 15 for214

the 64 bit architecture. The remaining 15 worker instances were allocated for215

native x86 builds.216

All services used Azure provided Premium SSD disk storage. Azure Networking217

was tweaked to allow full intercommunication in-between the VMs.218

The OBS Build setup was populated with the Apertis v2021dev3 release for the219

development, target and sdk components. The combined number of packages for220

the 3 repository components is: 4121221

• development => 3237 packages222

• target => 465 packages223

• sdk => 419 packages224

Of the mentioned repositories, development and target repository are built for 3225

architectures: x86-64, armv7hl and aarch64, while sdk repository is built only for226

the x86-64 architecture.227

The full archive-wide rebuild of Apertis v2021dev3 was completed in around 1228

week, with the above mentioned setup. There weren’t any build failure specific229

to the setup above, to the emulated build setup in particular. Some packages230

failed to build while running their respective build time tests.231

To summarize, Emulated Builds worked fine with 2 caveats mentioned below232

• Performance: Given the emulation penalty, builds were 4-5 times slower233

than native.234

8

• Failing packages: Given the performance penalty due to emulation, some235

of the tests failed due to timeouts236

9

	Build infrastructure on Intel x86-64
	Introduction
	Why host the whole build infrastructure on Intel x86-64
	Why OBS workers need a native environment
	CPU emulation
	Using emulation to target foreign architectures from x86-64
	Mitigating the impact on performance
	Risks
	Limited maturity of the support for cross-builds in OBS
	Versioning mismatches between emulated and injected native components
	Impact of performance loss on timing-depended tests
	Emulation bugs

	Approach
	Evaluation Report

