A

V

APERTIS

Image building infrastructure (obsolete)

20

21

22

23

24

25

26

27

Contents

Introduction 2
Technology overview 2
Jenkins master setup 2
Jenkins slave setup 3
Docker registry setup 3
Docker images for the build environment 3
Image building process 4
Jenkins jobs instantiation 4
OSTree support (server side) 4
Appendix: List of plugins installed on the Jenkins master 4

This document provides and overview of the image build pipeline prior to the
migration to GitLab CI/CD that has been completed during the v2021 devel-
opment cycle. Refer to the documentation in the infrastructure/apertis-image-
recipes! project for information about the current pipeline.

Introduction

The Apertis infrastructure supports continuous building of reference images,
hwpacks and ospacks. This document explains the infrastructure setup, config-
uration and concepts.

Technology overview

To build the various packs (hardware, os) as well as images, Apertis uses Debos?,
a flexible tool to configure the build of Debian-based operating systems. Debos
uses tools like debootstrap already present in the environment and relies on
virtualisation to securely do privileged operations without requiring root access.

For orchestrating Apertis uses the well-known Jenkins® automation server. Fol-
lowing current best practices the Apertis image build jobs use Jenkins pipelines
(introduced in Jenkins 2.0) to drive the build process as well as doing the actual

Lhttps://gitlab.apertis.org/infrastructure/apertis-image-recipes/
2https://github.com/go-debos/debos
3https://jenkins.io

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://github.com/go-debos/debos
https://jenkins.io
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://github.com/go-debos/debos
https://jenkins.io

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

build inside Docker images* to allow for complete control of the job specific
build-environment without relying on job-specific Jenkins slave configuration.
As an extra bonus the Docker images used by Jenkins can be re-used by devel-
opers for local testing in the same environment.

For each Apertis release there are two relevant Jenkins jobs to build images;
The first job builds a Docker image which defines the build environment and
uploads the resulting image to the Apertis Docker registry. This is defined in
the apertis-docker-images git repository”. The second job defines the build steps
for the various ospacks, hardware packs and images which are run in the Docker
image build by the previous job; it also uploads the results to images.apertis.org.

Jenkins master setup

Instructions to install Jenkins can be can be found on the Jenkins download
page’®. Using the Long-Term support version of Jenkins is recommended. For
the Apertis infrastructure Jenkins master is being run on Debian 9.3 (stretch).

The plugins that are installed on the master can be found in the [plugins ap-
pendix][Appendix: List of plugins installed on the Jenkins master]

Jenkins slave setup

Each Jenkins slave should be installed on a separate machine (or VM) in line
with the Jenkins best practices. As the image build environment is contained
in a Docker image, the Jenkins slave requires only a few tools to be installed.
Apart from running a Jenkins slave itself, the following requirements must be
satisfied on slave machines:

e git client installed on the slave

e Docker installed on the slave and usable by the Jenkins slave user

e /dev/kvm accessible by the Jenkins slave user (for hw acceleration support
in the image builder)

For the last requirement on Debian systems this can be achieved by dropping
a file called /etc/udev/rules.d/99-kvm-perms.rules in place with the following
content.

SUBSYSTEM=="misc", KERNEL=="kvm", GROUP="kvm", MODE="0666"

Documentation for installing Docker on Debian can be found as part of the
Docker documentation”. To allow Docker to be usable by Jenkins, the Jenkins
slave user should be configured as part of the docker group.

4https://jenkins.io/doc/book /pipeline/docker/
Shttps://gitlab.apertis.org/infrastructure/apertis-docker-images
Shttps://jenkins.io/download/

"https://docs.docker.com/install /linux/docker-ce/debian/

https://jenkins.io/doc/book/pipeline/docker/
https://gitlab.apertis.org/infrastructure/apertis-docker-images
https://jenkins.io/download/
https://jenkins.io/download/
https://jenkins.io/download/
https://docs.docker.com/install/linux/docker-ce/debian/
https://jenkins.io/doc/book/pipeline/docker/
https://gitlab.apertis.org/infrastructure/apertis-docker-images
https://jenkins.io/download/
https://docs.docker.com/install/linux/docker-ce/debian/

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

Documentation on how to setup Jenkins slaves can be found as part of the
Jenkins documentation®.

Docker registry setup

To avoid building Docker images for every image build round and to make it
easier for Jenkins and developers to share the same Docker environment for
build testing, it is recommended to run a Docker registry. The Docker registry
documentation? contains information on how to setup a registry.

Docker images for the build environment

The Docker images defining the environment for building the images can be
found in the apertis-docker-images git repository'’.

The toplevel Jenkinsfile is setup to build a Docker image based on the Dock-
erfile’! defined in the Apertis-image-builder directory and upload the result
to the public Apertis Docker registry docker-registry.apertis.org through the
authenticated upload channel auth.docker-registry.apertis.org.

For Apertis derivatives this file should be adjusted to upload the Docker image
to the Docker registry of the derivative.

Image building process

The image recipes and configuration can be found in the apertis-image-recipes
git repository'?. As with the Docker images, the top-level Jenkinsfile defines
the Jenkins job. For each image type to be built a parallel job is started which
runs the image-building toolchain in the Docker-defined environment.

The various recipes provide the configuration for debos, documentation about

the available actions can be found in the Debos documentation!?.

Jenkins jobs instantiation

Jenkins needs to be pointed to the repositories hosting the Jenkinsfiles by cre-
ating matching jobs on the master instance. This can be done either manually
from the web UI or using the YAML templates supported by the jenkins-jobs

8https://wiki.jenkins.io/display /JENKINS/Distributed+builds
9https://docs.docker.com /registry/deploying/
Ohttps://gitlab.apertis.org/infrastructure/apertis-docker-images
Mhttps://docs.docker.com/engine/reference/builder/

12 https://gitlab.apertis.org/infrastructure/apertis-image-recipes
Bhttps://godoc.org/github.com/go-debos/debos/actions

https://wiki.jenkins.io/display/JENKINS/Distributed+builds
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://gitlab.apertis.org/infrastructure/apertis-docker-images
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes
https://gitlab.apertis.org/infrastructure/apertis-image-recipes
https://gitlab.apertis.org/infrastructure/apertis-image-recipes
https://godoc.org/github.com/go-debos/debos/actions
https://wiki.jenkins.io/display/JENKINS/Distributed+builds
https://docs.docker.com/registry/deploying/
https://gitlab.apertis.org/infrastructure/apertis-docker-images
https://docs.docker.com/engine/reference/builder/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes
https://godoc.org/github.com/go-debos/debos/actions

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

122

123

124

command-line tool from the jenkins-job-builder package, version 2.0 or later
for the support of pipeline jobs.

For that purpose Apertis uses a set of job templates hosted in the apertis-

jenkins—jobs'* repository.

OSTree support (server side)

The image build jobs prepare OSTree repository to be installed server side.
In order to properly support OSTree server side, ostree-push package must be
installed in the OSTree repository server.

Appendix: List of plugins installed on the Jenkins
master

At the time of this writing the following plugins are installed on the Apertis
Jenkins master:

o ace-editor

¢ analysis-model-api

e ant

o antisamy-markup-formatter
¢ apache-httpcomponents-client-4-api
« artifactdeployer

o authentication-tokens

e blueocean

e blueocean-autofavorite

¢ blueocean-bitbucket-pipeline
¢ blueocean-commons

¢ blueocean-config

¢ blueocean-core-js

e blueocean-dashboard

¢ blueocean-display-url

¢ blueocean-events

¢ blueocean-executor-info

¢ blueocean-git-pipeline

¢ blueocean-github-pipeline
e blueocean-il8n

¢ blueocean-jira

¢ blueocean-jwt

e blueocean-personalization
¢ blueocean-pipeline-api-impl
e blueocean-pipeline-editor

Mhttps://gitlab.apertis.org/infrastructure/apertis-jenkins-jobs

https://gitlab.apertis.org/infrastructure/apertis-jenkins-jobs
https://gitlab.apertis.org/infrastructure/apertis-jenkins-jobs
https://gitlab.apertis.org/infrastructure/apertis-jenkins-jobs
https://gitlab.apertis.org/infrastructure/apertis-jenkins-jobs

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

blueocean-pipeline-scm-api
blueocean-rest
blueocean-rest-impl
blueocean-web
bouncycastle-api
branch-api
build-flow-plugin
build-name-setter
build-token-root
buildgraph-view
cloudbees-bitbucket-branch-source
cloudbees-folder
cobertura
code-coverage-api
command-launcher
conditional-buildstep
copyartifact

credentials
credentials-binding

cvs

display-url-api
docker-commons
docker-custom-build-environment
docker-workflow
durable-task

email-ext
embeddable-build-status
envinject

envinject-api
external-monitor-job
favorite

forensics-api

git

git-client

git-server

git-tag-message

github

github-api
github-branch-source
github-organization-folder
gitlab-plugin

handlebars
handy-uri-templates-2-api
htmlpublisher
hudson-pview-plugin
icon-shim

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

jackson2-api

javadoc

jdk-tool
jenkins-design-language
jira

Jjquery

jquery-detached

jsch

junit

ldap

lockable-resources
mailer

mapdb-api

matrix-auth
matrix-project
mattermost
maven-plugin

mercurial

metrics

modernstatus
momentjs
multiple-scms
pam-auth
parameterized-trigger
phabricator-plugin
pipeline-build-step
pipeline-github-lib
pipeline-graph-analysis
pipeline-input-step
pipeline-milestone-step
pipeline-model-api
pipeline-model-declarative-agent
pipeline-model-definition
pipeline-model-extensions
pipeline-rest-api
pipeline-stage-step
pipeline-stage-tags-metadata
pipeline-stage-view
plain-credentials
pollscm
promoted-builds
publish-over
publish-over-ssh
pubsub-light

repo

resource-disposer

217 o run-condition

218 e scm-api

210 ¢ scoring-load-balancer
220 e script-security

221 e sse-gateway

2 ¢ ssh-agent

23 ¢ ssh-credentials

224 o ssh-slaves

225 e structs

26 e subversion

207 e timestamper

28 ¢ token-macro

229 o translation

230 o trilead-api

231 e variant

23 e versionnumber

233 o view-job-filters

234 e warnings-ng

235 o windows-slaves

236 o workflow-aggregator
237 o workflow-api

238 o workflow-basic-steps
239 o workflow-cps

240 o workflow-cps-global-lib
241 o workflow-durable-task-step
242 o workflow-job

243 o workflow-multibranch
244 o workflow-scm-step
25 o workflow-step-api

246 o workflow-support

247 e ws-cleanup

xus To retrieve the list, access the script console and enter the following Groovy
29 SCript:

250 Jenkins.instance.pluginManager.plugins.toList ()
251 .sort{plugin -> plugin.getShortName () }
252 .each{plugin —> println ("* ${plugin.getShortName()}")}

	Introduction
	Technology overview
	Jenkins master setup
	Jenkins slave setup
	Docker registry setup
	Docker images for the build environment
	Image building process
	Jenkins jobs instantiation
	OSTree support (server side)
	Appendix: List of plugins installed on the Jenkins master

